1
0
mirror of https://git.tukaani.org/xz.git synced 2025-04-03 06:10:57 +00:00
xz/src/liblzma/check/crc_x86_clmul.h
Lasse Collin 54eaea5ea4 liblzma: x86 CLMUL CRC: Rewrite
It's faster with both tiny and large buffers and doesn't require
disabling any sanitizers. With large buffers the extra speed is
from folding four 16-byte chunks in parallel.

The 32-bit x86 with MSVC reportedly still needs a workaround.
Now the simpler "__asm mov ebx, ebx" trick is enough but it
needs to be in lzma_crc64() instead of crc64_arch_optimized().
Thanks to Iouri Kharon for testing and the fix.

Thanks to Ilya Kurdyukov for testing the speed with aligned and
unaligned buffers on a few x86 processors and on E2K v6.

Thanks to Sam James for general feedback.

Fixes: https://github.com/tukaani-project/xz/issues/112
Fixes: https://github.com/tukaani-project/xz/issues/122
2024-06-17 15:00:49 +03:00

379 lines
11 KiB
C

// SPDX-License-Identifier: 0BSD
///////////////////////////////////////////////////////////////////////////////
//
/// \file crc_x86_clmul.h
/// \brief CRC32 and CRC64 implementations using CLMUL instructions.
///
/// The CRC32 and CRC64 implementations use 32/64-bit x86 SSSE3, SSE4.1, and
/// CLMUL instructions. This is compatible with Elbrus 2000 (E2K) too.
///
/// See the Intel white paper "Fast CRC Computation for Generic Polynomials
/// Using PCLMULQDQ Instruction" from 2009. The original file seems to be
/// gone from Intel's website but a version is available here:
/// https://www.researchgate.net/publication/263424619_Fast_CRC_computation
/// (The link was checked on 2024-06-11.)
///
/// While this file has both CRC32 and CRC64 implementations, only one
/// can be built at a time. The version to build is selected by defining
/// BUILDING_CRC_CLMUL to 32 or 64 before including this file.
///
/// FIXME: Builds for 32-bit x86 use the assembly .S files by default
/// unless configured with --disable-assembler. Even then the lookup table
/// isn't omitted in crc64_table.c since it doesn't know that assembly
/// code has been disabled.
///
/// NOTE: The x86 CLMUL CRC implementation was rewritten for XZ Utils 5.8.0.
//
// Authors: Lasse Collin
// Ilya Kurdyukov
//
///////////////////////////////////////////////////////////////////////////////
// This file must not be included more than once.
#ifdef LZMA_CRC_X86_CLMUL_H
# error crc_x86_clmul.h was included twice.
#endif
#define LZMA_CRC_X86_CLMUL_H
#if BUILDING_CRC_CLMUL != 32 && BUILDING_CRC_CLMUL != 64
# error BUILDING_CRC_CLMUL is undefined or has an invalid value
#endif
#include <immintrin.h>
#if defined(_MSC_VER)
# include <intrin.h>
#elif defined(HAVE_CPUID_H)
# include <cpuid.h>
#endif
// EDG-based compilers (Intel's classic compiler and compiler for E2K) can
// define __GNUC__ but the attribute must not be used with them.
// The new Clang-based ICX needs the attribute.
//
// NOTE: Build systems check for this too, keep them in sync with this.
#if (defined(__GNUC__) || defined(__clang__)) && !defined(__EDG__)
# define crc_attr_target \
__attribute__((__target__("ssse3,sse4.1,pclmul")))
#else
# define crc_attr_target
#endif
// GCC and Clang would produce good code with _mm_set_epi64x
// but MSVC needs _mm_cvtsi64_si128 on x86-64.
#if defined(__i386__) || defined(_M_IX86)
# define my_set_low64(a) _mm_set_epi64x(0, (a))
#else
# define my_set_low64(a) _mm_cvtsi64_si128(a)
#endif
// Align it so that the whole array is within the same cache line.
// More than one unaligned load can be done from this during the
// same CRC function call.
//
// The bytes [0] to [31] are used with AND to clear the low bytes. (With ANDN
// those could be used to clear the high bytes too but it's not needed here.)
//
// The bytes [16] to [47] are for left shifts.
// The bytes [32] to [63] are for right shifts.
alignas(64)
static uint8_t vmasks[64] = {
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07,
0x08, 0x09, 0x0A, 0x0B, 0x0C, 0x0D, 0x0E, 0x0F,
0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
};
// *Unaligned* 128-bit load
crc_attr_target
static inline __m128i
my_load128(const uint8_t *p)
{
return _mm_loadu_si128((const __m128i *)p);
}
// Keep the highest "count" bytes as is and clear the remaining low bytes.
crc_attr_target
static inline __m128i
keep_high_bytes(__m128i v, size_t count)
{
return _mm_and_si128(my_load128((vmasks + count)), v);
}
// Shift the 128-bit value left by "amount" bytes (not bits).
crc_attr_target
static inline __m128i
shift_left(__m128i v, size_t amount)
{
return _mm_shuffle_epi8(v, my_load128((vmasks + 32 - amount)));
}
// Shift the 128-bit value right by "amount" bytes (not bits).
crc_attr_target
static inline __m128i
shift_right(__m128i v, size_t amount)
{
return _mm_shuffle_epi8(v, my_load128((vmasks + 32 + amount)));
}
crc_attr_target
static inline __m128i
fold(__m128i v, __m128i k)
{
__m128i a = _mm_clmulepi64_si128(v, k, 0x00);
__m128i b = _mm_clmulepi64_si128(v, k, 0x11);
return _mm_xor_si128(a, b);
}
crc_attr_target
static inline __m128i
fold_xor(__m128i v, __m128i k, const uint8_t *buf)
{
return _mm_xor_si128(my_load128(buf), fold(v, k));
}
#if BUILDING_CRC_CLMUL == 32
crc_attr_target
static uint32_t
crc32_arch_optimized(const uint8_t *buf, size_t size, uint32_t crc)
#else
crc_attr_target
static uint64_t
crc64_arch_optimized(const uint8_t *buf, size_t size, uint64_t crc)
#endif
{
// We will assume that there is at least one byte of input.
if (size == 0)
return crc;
// See crc_clmul_consts_gen.c.
#if BUILDING_CRC_CLMUL == 32
const __m128i fold512 = _mm_set_epi64x(0x1d9513d7, 0x8f352d95);
const __m128i fold128 = _mm_set_epi64x(0xccaa009e, 0xae689191);
const __m128i mu_p = _mm_set_epi64x(
(int64_t)0xb4e5b025f7011641, 0x1db710640);
#else
const __m128i fold512 = _mm_set_epi64x(
(int64_t)0x081f6054a7842df4, (int64_t)0x6ae3efbb9dd441f3);
const __m128i fold128 = _mm_set_epi64x(
(int64_t)0xdabe95afc7875f40, (int64_t)0xe05dd497ca393ae4);
const __m128i mu_p = _mm_set_epi64x(
(int64_t)0x9c3e466c172963d5, (int64_t)0x92d8af2baf0e1e84);
#endif
__m128i v0, v1, v2, v3;
crc = ~crc;
if (size < 8) {
uint64_t x = crc;
size_t i = 0;
// Checking the bit instead of comparing the size means
// that we don't need to update the size between the steps.
if (size & 4) {
x ^= read32le(buf);
buf += 4;
i = 32;
}
if (size & 2) {
x ^= (uint64_t)read16le(buf) << i;
buf += 2;
i += 16;
}
if (size & 1)
x ^= (uint64_t)*buf << i;
v0 = my_set_low64((int64_t)x);
v0 = shift_left(v0, 8 - size);
} else if (size < 16) {
v0 = my_set_low64((int64_t)(crc ^ read64le(buf)));
// NOTE: buf is intentionally left 8 bytes behind so that
// we can read the last 1-7 bytes with read64le(buf + size).
size -= 8;
// Handling 8-byte input specially is a speed optimization
// as the clmul can be skipped. A branch is also needed to
// avoid a too high shift amount.
if (size > 0) {
const size_t padding = 8 - size;
uint64_t high = read64le(buf + size) >> (padding * 8);
#if defined(__i386__) || defined(_M_IX86)
// Simple but likely not the best code for 32-bit x86.
v0 = _mm_insert_epi32(v0, (int32_t)high, 2);
v0 = _mm_insert_epi32(v0, (int32_t)(high >> 32), 3);
#else
v0 = _mm_insert_epi64(v0, (int64_t)high, 1);
#endif
v0 = shift_left(v0, padding);
v1 = _mm_srli_si128(v0, 8);
v0 = _mm_clmulepi64_si128(v0, fold128, 0x10);
v0 = _mm_xor_si128(v0, v1);
}
} else {
v0 = my_set_low64((int64_t)crc);
// To align or not to align the buf pointer? If the end of
// the buffer isn't aligned, aligning the pointer here would
// make us do an extra folding step with the associated byte
// shuffling overhead. The cost of that would need to be
// lower than the benefit of aligned reads. Testing on an old
// Intel Ivy Bridge processor suggested that aligning isn't
// worth the cost but it likely depends on the processor and
// buffer size. Unaligned loads (MOVDQU) should be fast on
// x86 processors that support PCLMULQDQ, so we don't align
// the buf pointer here.
// Read the first (and possibly the only) full 16 bytes.
v0 = _mm_xor_si128(v0, my_load128(buf));
buf += 16;
size -= 16;
if (size >= 48) {
v1 = my_load128(buf);
v2 = my_load128(buf + 16);
v3 = my_load128(buf + 32);
buf += 48;
size -= 48;
while (size >= 64) {
v0 = fold_xor(v0, fold512, buf);
v1 = fold_xor(v1, fold512, buf + 16);
v2 = fold_xor(v2, fold512, buf + 32);
v3 = fold_xor(v3, fold512, buf + 48);
buf += 64;
size -= 64;
}
v0 = _mm_xor_si128(v1, fold(v0, fold128));
v0 = _mm_xor_si128(v2, fold(v0, fold128));
v0 = _mm_xor_si128(v3, fold(v0, fold128));
}
while (size >= 16) {
v0 = fold_xor(v0, fold128, buf);
buf += 16;
size -= 16;
}
if (size > 0) {
// We want the last "size" number of input bytes to
// be at the high bits of v1. First do a full 16-byte
// load and then mask the low bytes to zeros.
v1 = my_load128(buf + size - 16);
v1 = keep_high_bytes(v1, size);
// Shift high bytes from v0 to the low bytes of v1.
//
// Alternatively we could replace the combination
// keep_high_bytes + shift_right + _mm_or_si128 with
// _mm_shuffle_epi8 + _mm_blendv_epi8 but that would
// require larger tables for the masks. Now there are
// three loads (instead of two) from the mask tables
// but they all are from the same cache line.
v1 = _mm_or_si128(v1, shift_right(v0, size));
// Shift high bytes of v0 away, padding the
// low bytes with zeros.
v0 = shift_left(v0, 16 - size);
v0 = _mm_xor_si128(v1, fold(v0, fold128));
}
v1 = _mm_srli_si128(v0, 8);
v0 = _mm_clmulepi64_si128(v0, fold128, 0x10);
v0 = _mm_xor_si128(v0, v1);
}
// Barrett reduction
#if BUILDING_CRC_CLMUL == 32
v1 = _mm_clmulepi64_si128(v0, mu_p, 0x10); // v0 * mu
v1 = _mm_clmulepi64_si128(v1, mu_p, 0x00); // v1 * p
v0 = _mm_xor_si128(v0, v1);
return ~(uint32_t)_mm_extract_epi32(v0, 2);
#else
// Because p is 65 bits but one bit doesn't fit into the 64-bit
// half of __m128i, finish the second clmul by shifting v1 left
// by 64 bits and xorring it to the final result.
v1 = _mm_clmulepi64_si128(v0, mu_p, 0x10); // v0 * mu
v2 = _mm_slli_si128(v1, 8);
v1 = _mm_clmulepi64_si128(v1, mu_p, 0x00); // v1 * p
v0 = _mm_xor_si128(v0, v2);
v0 = _mm_xor_si128(v0, v1);
#if defined(__i386__) || defined(_M_IX86)
return ~(((uint64_t)(uint32_t)_mm_extract_epi32(v0, 3) << 32) |
(uint64_t)(uint32_t)_mm_extract_epi32(v0, 2));
#else
return ~(uint64_t)_mm_extract_epi64(v0, 1);
#endif
#endif
}
// Inlining this function duplicates the function body in crc32_resolve() and
// crc64_resolve(), but this is acceptable because this is a tiny function.
static inline bool
is_arch_extension_supported(void)
{
int success = 1;
uint32_t r[4]; // eax, ebx, ecx, edx
#if defined(_MSC_VER)
// This needs <intrin.h> with MSVC. ICC has it as a built-in
// on all platforms.
__cpuid(r, 1);
#elif defined(HAVE_CPUID_H)
// Compared to just using __asm__ to run CPUID, this also checks
// that CPUID is supported and saves and restores ebx as that is
// needed with GCC < 5 with position-independent code (PIC).
success = __get_cpuid(1, &r[0], &r[1], &r[2], &r[3]);
#else
// Just a fallback that shouldn't be needed.
__asm__("cpuid\n\t"
: "=a"(r[0]), "=b"(r[1]), "=c"(r[2]), "=d"(r[3])
: "a"(1), "c"(0));
#endif
// Returns true if these are supported:
// CLMUL (bit 1 in ecx)
// SSSE3 (bit 9 in ecx)
// SSE4.1 (bit 19 in ecx)
const uint32_t ecx_mask = (1 << 1) | (1 << 9) | (1 << 19);
return success && (r[2] & ecx_mask) == ecx_mask;
// Alternative methods that weren't used:
// - ICC's _may_i_use_cpu_feature: the other methods should work too.
// - GCC >= 6 / Clang / ICX __builtin_cpu_supports("pclmul")
//
// CPUID decoding is needed with MSVC anyway and older GCC. This keeps
// the feature checks in the build system simpler too. The nice thing
// about __builtin_cpu_supports would be that it generates very short
// code as is it only reads a variable set at startup but a few bytes
// doesn't matter here.
}