// SPDX-License-Identifier: 0BSD /////////////////////////////////////////////////////////////////////////////// // /// \file crc_x86_clmul.h /// \brief CRC32 and CRC64 implementations using CLMUL instructions. /// /// The CRC32 and CRC64 implementations use 32/64-bit x86 SSSE3, SSE4.1, and /// CLMUL instructions. This is compatible with Elbrus 2000 (E2K) too. /// /// See the Intel white paper "Fast CRC Computation for Generic Polynomials /// Using PCLMULQDQ Instruction" from 2009. The original file seems to be /// gone from Intel's website but a version is available here: /// https://www.researchgate.net/publication/263424619_Fast_CRC_computation /// (The link was checked on 2024-06-11.) /// /// While this file has both CRC32 and CRC64 implementations, only one /// can be built at a time. The version to build is selected by defining /// BUILDING_CRC_CLMUL to 32 or 64 before including this file. /// /// FIXME: Builds for 32-bit x86 use the assembly .S files by default /// unless configured with --disable-assembler. Even then the lookup table /// isn't omitted in crc64_table.c since it doesn't know that assembly /// code has been disabled. /// /// NOTE: The x86 CLMUL CRC implementation was rewritten for XZ Utils 5.8.0. // // Authors: Lasse Collin // Ilya Kurdyukov // /////////////////////////////////////////////////////////////////////////////// // This file must not be included more than once. #ifdef LZMA_CRC_X86_CLMUL_H # error crc_x86_clmul.h was included twice. #endif #define LZMA_CRC_X86_CLMUL_H #if BUILDING_CRC_CLMUL != 32 && BUILDING_CRC_CLMUL != 64 # error BUILDING_CRC_CLMUL is undefined or has an invalid value #endif #include #if defined(_MSC_VER) # include #elif defined(HAVE_CPUID_H) # include #endif // EDG-based compilers (Intel's classic compiler and compiler for E2K) can // define __GNUC__ but the attribute must not be used with them. // The new Clang-based ICX needs the attribute. // // NOTE: Build systems check for this too, keep them in sync with this. #if (defined(__GNUC__) || defined(__clang__)) && !defined(__EDG__) # define crc_attr_target \ __attribute__((__target__("ssse3,sse4.1,pclmul"))) #else # define crc_attr_target #endif // GCC and Clang would produce good code with _mm_set_epi64x // but MSVC needs _mm_cvtsi64_si128 on x86-64. #if defined(__i386__) || defined(_M_IX86) # define my_set_low64(a) _mm_set_epi64x(0, (a)) #else # define my_set_low64(a) _mm_cvtsi64_si128(a) #endif // Align it so that the whole array is within the same cache line. // More than one unaligned load can be done from this during the // same CRC function call. // // The bytes [0] to [31] are used with AND to clear the low bytes. (With ANDN // those could be used to clear the high bytes too but it's not needed here.) // // The bytes [16] to [47] are for left shifts. // The bytes [32] to [63] are for right shifts. alignas(64) static uint8_t vmasks[64] = { 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08, 0x09, 0x0A, 0x0B, 0x0C, 0x0D, 0x0E, 0x0F, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, }; // *Unaligned* 128-bit load crc_attr_target static inline __m128i my_load128(const uint8_t *p) { return _mm_loadu_si128((const __m128i *)p); } // Keep the highest "count" bytes as is and clear the remaining low bytes. crc_attr_target static inline __m128i keep_high_bytes(__m128i v, size_t count) { return _mm_and_si128(my_load128((vmasks + count)), v); } // Shift the 128-bit value left by "amount" bytes (not bits). crc_attr_target static inline __m128i shift_left(__m128i v, size_t amount) { return _mm_shuffle_epi8(v, my_load128((vmasks + 32 - amount))); } // Shift the 128-bit value right by "amount" bytes (not bits). crc_attr_target static inline __m128i shift_right(__m128i v, size_t amount) { return _mm_shuffle_epi8(v, my_load128((vmasks + 32 + amount))); } crc_attr_target static inline __m128i fold(__m128i v, __m128i k) { __m128i a = _mm_clmulepi64_si128(v, k, 0x00); __m128i b = _mm_clmulepi64_si128(v, k, 0x11); return _mm_xor_si128(a, b); } crc_attr_target static inline __m128i fold_xor(__m128i v, __m128i k, const uint8_t *buf) { return _mm_xor_si128(my_load128(buf), fold(v, k)); } #if BUILDING_CRC_CLMUL == 32 crc_attr_target static uint32_t crc32_arch_optimized(const uint8_t *buf, size_t size, uint32_t crc) #else crc_attr_target static uint64_t crc64_arch_optimized(const uint8_t *buf, size_t size, uint64_t crc) #endif { // We will assume that there is at least one byte of input. if (size == 0) return crc; // See crc_clmul_consts_gen.c. #if BUILDING_CRC_CLMUL == 32 const __m128i fold512 = _mm_set_epi64x(0x1d9513d7, 0x8f352d95); const __m128i fold128 = _mm_set_epi64x(0xccaa009e, 0xae689191); const __m128i mu_p = _mm_set_epi64x( (int64_t)0xb4e5b025f7011641, 0x1db710640); #else const __m128i fold512 = _mm_set_epi64x( (int64_t)0x081f6054a7842df4, (int64_t)0x6ae3efbb9dd441f3); const __m128i fold128 = _mm_set_epi64x( (int64_t)0xdabe95afc7875f40, (int64_t)0xe05dd497ca393ae4); const __m128i mu_p = _mm_set_epi64x( (int64_t)0x9c3e466c172963d5, (int64_t)0x92d8af2baf0e1e84); #endif __m128i v0, v1, v2, v3; crc = ~crc; if (size < 8) { uint64_t x = crc; size_t i = 0; // Checking the bit instead of comparing the size means // that we don't need to update the size between the steps. if (size & 4) { x ^= read32le(buf); buf += 4; i = 32; } if (size & 2) { x ^= (uint64_t)read16le(buf) << i; buf += 2; i += 16; } if (size & 1) x ^= (uint64_t)*buf << i; v0 = my_set_low64((int64_t)x); v0 = shift_left(v0, 8 - size); } else if (size < 16) { v0 = my_set_low64((int64_t)(crc ^ read64le(buf))); // NOTE: buf is intentionally left 8 bytes behind so that // we can read the last 1-7 bytes with read64le(buf + size). size -= 8; // Handling 8-byte input specially is a speed optimization // as the clmul can be skipped. A branch is also needed to // avoid a too high shift amount. if (size > 0) { const size_t padding = 8 - size; uint64_t high = read64le(buf + size) >> (padding * 8); #if defined(__i386__) || defined(_M_IX86) // Simple but likely not the best code for 32-bit x86. v0 = _mm_insert_epi32(v0, (int32_t)high, 2); v0 = _mm_insert_epi32(v0, (int32_t)(high >> 32), 3); #else v0 = _mm_insert_epi64(v0, (int64_t)high, 1); #endif v0 = shift_left(v0, padding); v1 = _mm_srli_si128(v0, 8); v0 = _mm_clmulepi64_si128(v0, fold128, 0x10); v0 = _mm_xor_si128(v0, v1); } } else { v0 = my_set_low64((int64_t)crc); // To align or not to align the buf pointer? If the end of // the buffer isn't aligned, aligning the pointer here would // make us do an extra folding step with the associated byte // shuffling overhead. The cost of that would need to be // lower than the benefit of aligned reads. Testing on an old // Intel Ivy Bridge processor suggested that aligning isn't // worth the cost but it likely depends on the processor and // buffer size. Unaligned loads (MOVDQU) should be fast on // x86 processors that support PCLMULQDQ, so we don't align // the buf pointer here. // Read the first (and possibly the only) full 16 bytes. v0 = _mm_xor_si128(v0, my_load128(buf)); buf += 16; size -= 16; if (size >= 48) { v1 = my_load128(buf); v2 = my_load128(buf + 16); v3 = my_load128(buf + 32); buf += 48; size -= 48; while (size >= 64) { v0 = fold_xor(v0, fold512, buf); v1 = fold_xor(v1, fold512, buf + 16); v2 = fold_xor(v2, fold512, buf + 32); v3 = fold_xor(v3, fold512, buf + 48); buf += 64; size -= 64; } v0 = _mm_xor_si128(v1, fold(v0, fold128)); v0 = _mm_xor_si128(v2, fold(v0, fold128)); v0 = _mm_xor_si128(v3, fold(v0, fold128)); } while (size >= 16) { v0 = fold_xor(v0, fold128, buf); buf += 16; size -= 16; } if (size > 0) { // We want the last "size" number of input bytes to // be at the high bits of v1. First do a full 16-byte // load and then mask the low bytes to zeros. v1 = my_load128(buf + size - 16); v1 = keep_high_bytes(v1, size); // Shift high bytes from v0 to the low bytes of v1. // // Alternatively we could replace the combination // keep_high_bytes + shift_right + _mm_or_si128 with // _mm_shuffle_epi8 + _mm_blendv_epi8 but that would // require larger tables for the masks. Now there are // three loads (instead of two) from the mask tables // but they all are from the same cache line. v1 = _mm_or_si128(v1, shift_right(v0, size)); // Shift high bytes of v0 away, padding the // low bytes with zeros. v0 = shift_left(v0, 16 - size); v0 = _mm_xor_si128(v1, fold(v0, fold128)); } v1 = _mm_srli_si128(v0, 8); v0 = _mm_clmulepi64_si128(v0, fold128, 0x10); v0 = _mm_xor_si128(v0, v1); } // Barrett reduction #if BUILDING_CRC_CLMUL == 32 v1 = _mm_clmulepi64_si128(v0, mu_p, 0x10); // v0 * mu v1 = _mm_clmulepi64_si128(v1, mu_p, 0x00); // v1 * p v0 = _mm_xor_si128(v0, v1); return ~(uint32_t)_mm_extract_epi32(v0, 2); #else // Because p is 65 bits but one bit doesn't fit into the 64-bit // half of __m128i, finish the second clmul by shifting v1 left // by 64 bits and xorring it to the final result. v1 = _mm_clmulepi64_si128(v0, mu_p, 0x10); // v0 * mu v2 = _mm_slli_si128(v1, 8); v1 = _mm_clmulepi64_si128(v1, mu_p, 0x00); // v1 * p v0 = _mm_xor_si128(v0, v2); v0 = _mm_xor_si128(v0, v1); #if defined(__i386__) || defined(_M_IX86) return ~(((uint64_t)(uint32_t)_mm_extract_epi32(v0, 3) << 32) | (uint64_t)(uint32_t)_mm_extract_epi32(v0, 2)); #else return ~(uint64_t)_mm_extract_epi64(v0, 1); #endif #endif } // Inlining this function duplicates the function body in crc32_resolve() and // crc64_resolve(), but this is acceptable because this is a tiny function. static inline bool is_arch_extension_supported(void) { int success = 1; uint32_t r[4]; // eax, ebx, ecx, edx #if defined(_MSC_VER) // This needs with MSVC. ICC has it as a built-in // on all platforms. __cpuid(r, 1); #elif defined(HAVE_CPUID_H) // Compared to just using __asm__ to run CPUID, this also checks // that CPUID is supported and saves and restores ebx as that is // needed with GCC < 5 with position-independent code (PIC). success = __get_cpuid(1, &r[0], &r[1], &r[2], &r[3]); #else // Just a fallback that shouldn't be needed. __asm__("cpuid\n\t" : "=a"(r[0]), "=b"(r[1]), "=c"(r[2]), "=d"(r[3]) : "a"(1), "c"(0)); #endif // Returns true if these are supported: // CLMUL (bit 1 in ecx) // SSSE3 (bit 9 in ecx) // SSE4.1 (bit 19 in ecx) const uint32_t ecx_mask = (1 << 1) | (1 << 9) | (1 << 19); return success && (r[2] & ecx_mask) == ecx_mask; // Alternative methods that weren't used: // - ICC's _may_i_use_cpu_feature: the other methods should work too. // - GCC >= 6 / Clang / ICX __builtin_cpu_supports("pclmul") // // CPUID decoding is needed with MSVC anyway and older GCC. This keeps // the feature checks in the build system simpler too. The nice thing // about __builtin_cpu_supports would be that it generates very short // code as is it only reads a variable set at startup but a few bytes // doesn't matter here. }