For compatibility with C23's [[noreturn]], tuklib_attr_noreturn
must be at the beginning of declaration (before "extern" or
"static", and even before any GNU C's __attribute__).
This commit also moves all other function attributes to
the beginning of function declarations. "extern" is kept
at the beginning of a line so the attributes are listed on
separate lines before "extern" or "static".
(cherry picked from commit b71b8922ef)
xrealloc() is obviously incorrect, modern GCC docs even
mention realloc() as an example where this attribute
cannot be used.
liblzma's lzma_alloc() and lzma_alloc_zero() would be
correct uses most of the time but custom allocators
may use a memory pool or otherwise hold the pointer
so aliasing issues could happen in theory.
The xstrdup() case likely was correct but I removed it anyway.
Now there are no __malloc__ attributes left in the code.
The allocations aren't in hot paths so this should make
no practical difference.
(cherry picked from commit 359e5c6cb1)
SSIZE_MAX isn't readily available on MSVC. Removing it means
that there is one thing less to worry when porting to MSVC.
(cherry picked from commit ef71f83973)
The argument to vli_ceil4() should always guarantee the return value
is also a valid lzma_vli. Thus the highest three valid lzma_vli values
are invalid arguments. All uses of the function ensure this so the
assert is updated to match this.
(cherry picked from commit 773f1e8622)
This was not a security bug since there was no path to overflow
UINT64_MAX in lzma_index_append() or when it calls index_file_size().
The bug was discovered by a failing assert() in vli_ceil4() when called
from index_file_size() when unpadded_sum (the sum of the compressed size
of current Stream and the unpadded_size parameter) exceeds LZMA_VLI_MAX.
Previously, the unpadded_size parameter was checked to be not greater
than UNPADDED_SIZE_MAX, but no check was done once compressed_base was
added.
This could not have caused an integer overflow in index_file_size() when
called by lzma_index_append(). The calculation for file_size breaks down
into the sum of:
- Compressed base from all previous Streams
- 2 * LZMA_STREAM_HEADER_SIZE (size of the current Streams header and
footer)
- stream_padding (can be set by lzma_index_stream_padding())
- Compressed base from the current Stream
- Unpadded size (parameter to lzma_index_append())
The sum of everything except for Unpadded size must be less than
LZMA_VLI_MAX. This is guarenteed by overflow checks in the functions
that can set these values including lzma_index_stream_padding(),
lzma_index_append(), and lzma_index_cat(). The maximum value for
Unpadded size is enforced by lzma_index_append() to be less than or
equal UNPADDED_SIZE_MAX. Thus, the sum cannot exceed UINT64_MAX since
LZMA_VLI_MAX is half of UINT64_MAX.
Thanks to Joona Kannisto for reporting this.
(cherry picked from commit 68bda971bb)
The "once_" variable was accidentally referred to as just "once". This
prevented building with Vista threads when
HAVE_FUNC_ATTRIBUTE_CONSTRUCTOR was not defined.
(cherry picked from commit c0c0cd4a48)
To workaround Automake lacking Windows resource compiler support, an
empty source file is compiled to overwrite the resource files for static
library builds. Translation units without an external declaration are
not allowed by the C standard and result in a warning when used with
-Wempty-translation-unit (Clang) or -pedantic (GCC).
(cherry picked from commit 19899340cf)
In lzma_memcmplen(), the <intrin.h> header file is only included if
_MSC_VER and _M_X64 are both defined but _BitScanForward64() was
previously used if _M_X64 was defined. GCC for MSYS2 defines _M_X64 but
not _MSC_VER so _BitScanForward64() was used without including
<intrin.h>.
Now, lzma_memcmplen() will use __builtin_ctzll() for MSYS2 GCC builds as
expected.
(cherry picked from commit 64ee0caaea)
This change only impacts the compiler warning since it was impossible
for the wait_abs struct in stream_encode_mt() to be used before it was
initialized since mythread_condtime_set() will always be called before
mythread_cond_timedwait().
Since the mythread.h code is different between the POSIX and
Windows versions, this warning was only present on Windows builds.
Thanks to Arthur S for reporting the warning and providing an initial
patch.
(cherry picked from commit 1155471651)
Legacy Windows did not need to #include <intrin.h> to use the MSVC
intrinsics. Newer versions likely just issue a warning, but the MSVC
documentation says to include the header file for the intrinsics we use.
GCC and Clang can "pretend" to be MSVC on Windows, so extra checks are
needed in tuklib_integer.h to only include <intrin.h> when it will is
actually needed.
Clang has support for __builtin_clz(), but previously Clang would
fallback to either the MSVC intrinsic or the regular C code. This was
discovered due to a bug where a new version of Clang required the
<intrin.h> header file in order to use the MSVC intrinsics.
Thanks to Anton Kochkov for notifying us about the bug.
In the C99 and C17 standards, section 6.5.6 paragraph 8 means that
adding 0 to a null pointer is undefined behavior. As of writing,
"clang -fsanitize=undefined" (Clang 15) diagnoses this. However,
I'm not aware of any compiler that would take advantage of this
when optimizing (Clang 15 included). It's good to avoid this anyway
since compilers might some day infer that pointer arithmetic implies
that the pointer is not NULL. That is, the following foo() would then
unconditionally return 0, even for foo(NULL, 0):
void bar(char *a, char *b);
int foo(char *a, size_t n)
{
bar(a, a + n);
return a == NULL;
}
In contrast to C, C++ explicitly allows null pointer + 0. So if
the above is compiled as C++ then there is no undefined behavior
in the foo(NULL, 0) call.
To me it seems that changing the C standard would be the sane
thing to do (just add one sentence) as it would ensure that a huge
amount of old code won't break in the future. Based on web searches
it seems that a large number of codebases (where null pointer + 0
occurs) are being fixed instead to be future-proof in case compilers
will some day optimize based on it (like making the above foo(NULL, 0)
return 0) which in the worst case will cause security bugs.
Some projects don't plan to change it. For example, gnulib and thus
many GNU tools currently require that null pointer + 0 is defined:
https://lists.gnu.org/archive/html/bug-gnulib/2021-11/msg00000.htmlhttps://www.gnu.org/software/gnulib/manual/html_node/Other-portability-assumptions.html
In XZ Utils null pointer + 0 issue should be fixed after this
commit. This adds a few if-statements and thus branches to avoid
null pointer + 0. These check for size > 0 instead of ptr != NULL
because this way bugs where size > 0 && ptr == NULL will likely
get caught quickly. None of them are in hot spots so it shouldn't
matter for performance.
A little less readable version would be replacing
ptr + offset
with
offset != 0 ? ptr + offset : ptr
or creating a macro for it:
#define my_ptr_add(ptr, offset) \
((offset) != 0 ? ((ptr) + (offset)) : (ptr))
Checking for offset != 0 instead of ptr != NULL allows GCC >= 8.1,
Clang >= 7, and Clang-based ICX to optimize it to the very same code
as ptr + offset. That is, it won't create a branch. So for hot code
this could be a good solution to avoid null pointer + 0. Unfortunately
other compilers like ICC 2021 or MSVC 19.33 (VS2022) will create a
branch from my_ptr_add().
Thanks to Marcin Kowalczyk for reporting the problem:
https://github.com/tukaani-project/xz/issues/36
tuklib_physmem depends on GetProcAddress() for both MSVC and MinGW-w64
to retrieve a function address. The proper way to do this is to cast the
return value to the type of function pointer retrieved. Unfortunately,
this causes a cast-function-type warning, so the best solution is to
simply ignore the warning.
Calling coder_set_compression_settings() in list mode with verbose mode
on caused the filter chain and memory requirements to print. This was
unnecessary since the command results in an error and not consistent
with other formats like lzma and alone.
This is similar to 2ce4f36f17.
The actual initialization of the variables is done inside
mythread_sync() macro. Clang doesn't seem to see that
the initialization code inside the macro is always executed.
clang and gcc differ in how they handle -Wformat-nonliteral. gcc will
allow a non-literal format string as long as the function takes its
format arguments as a va_list.
The code that parses --memlimit options and --block-list modified
the argv[] when parsing the option string from optarg. This was
visible in "ps auxf" and such and could be confusing. I didn't
understand it back in the day when I wrote that code. Now a copy
is allocated when modifiable strings are needed.
The API docs gave an impression that such checks are done
but they actually weren't done. In practice it made little
difference since the calling code has a bug if these are NULL.
Thanks to Jia Tan for the original patch that checked for
block->filters == NULL.
If someone sets up Clang to define __GNUC__ to 10 or greater
then symvers broke. __has_attribute is supported by such GCC
and Clang versions that don't support __symver__ so this should
be much better and simpler way to detect if __symver__ is
actually supported.
Thanks to Tomasz Gajc for the bug report.
It not only makes no sense to put symbol versions into a static library
but it can also cause breakage.
By default Libtool #defines PIC if building a shared library and
doesn't define it for static libraries. This is documented in the
Libtool manual. It can be overriden using --with-pic or --without-pic.
configure.ac detects if --with-pic or --without-pic is used and then
gives an error if neither --disable-shared nor --disable-static was
used at the same time. Thus, in normal situations it works to build
both shared and static library at the same time on GNU/Linux,
only --with-pic or --without-pic requires that only one type of
library is built.
Thanks to John Paul Adrian Glaubitz from Debian for reporting
the problem that occurred on ia64:
https://www.mail-archive.com/xz-devel@tukaani.org/msg00610.html
This time it can happen when lzma_stream_encoder_mt() is used
to reinitialize an existing multi-threaded Stream encoder
and one of 1-4 tiny allocations in lzma_filters_copy() fail.
It's very similar to the previous bug
10430fbf38, happening with
an array of lzma_filter structures whose old options are freed
but the replacement never arrives due to a memory allocation
failure in lzma_filters_copy().
The documentation mentions that lzma_block_encoder() supports
LZMA_SYNC_FLUSH but it was never added to supported_actions[]
in the internal structure. Because of this, LZMA_SYNC_FLUSH could
not be used with the Block encoder unless it was the next coder
after something like stream_encoder() or stream_encoder_mt().
The bug was in the single-threaded .xz Stream encoder
in the code that is used for both re-initialization and for
lzma_filters_update(). To trigger it, an application had
to either re-initialize an existing encoder instance with
lzma_stream_encoder() or use lzma_filters_update(), and
then one of the 1-4 tiny allocations in lzma_filters_copy()
(called from stream_encoder_update()) must fail. An error
was correctly reported but the encoder state was corrupted.
This is related to the recent fix in
f8ee61e74e which is good but
it wasn't enough to fix the main problem in stream_encoder.c.
The encoder doesn't support dictionary sizes larger than 1536 MiB.
This is validated, for example, when calculating the memory usage
via lzma_raw_encoder_memusage(). It is also enforced by the LZ
part of the encoder initialization. However, LZMA encoder with
LZMA_MODE_NORMAL did an unsafe calculation with dict_size before
such validation and that results in an infinite loop if dict_size
was 2 << 30 or greater.
__SSE2__ is the correct macro for SSE2 support with GCC, Clang,
and ICC. __SSE2_MATH__ means doing floating point math with SSE2
instead of 387. Often the latter macro is defined if the first
one is but it was still a bug.
In practice this means making the scripts work when
the input files have an unsupported check type which
isn't a problem in practice unless support for
some check types has been disabled at build time.