While the backdoor was inactive (and thus harmless) without inserting
a small trigger code into the build system when the source package was
created, it's good to remove this anyway:
- The executable payloads were embedded as binary blobs in
the test files. This was a blatant violation of the
Debian Free Software Guidelines.
- On machines that see lots bots poking at the SSH port, the backdoor
noticeably increased CPU load, resulting in degraded user experience
and thus overwhelmingly negative user feedback.
- The maintainer who added the backdoor has disappeared.
- Backdoors are bad for security.
This reverts the following without making any other changes:
6e636819 Tests: Update two test files.
a3a29bbd Tests: Test --single-stream can decompress bad-3-corrupt_lzma2.xz.
0b4ccc91 Tests: Update RISC-V test files.
8c9b8b20 liblzma: Fix typos in crc32_fast.c and crc64_fast.c.
82ecc538 liblzma: Fix false Valgrind error report with GCC.
cf44e4b7 Tests: Add a few test files.
3060e107 Tests: Use smaller dictionary size in RISC-V test files.
e2870db5 Tests: Add two RISC-V Filter test files.
The RISC-V test files also have real content that tests the filter
but the real content would fit into much smaller files. A generator
program would need to be available as well.
Thanks to Andres Freund for finding and reporting it and making
it public quickly so others could act without a delay.
See: https://www.openwall.com/lists/oss-security/2024/03/29/4
With GCC and a certain combination of flags, Valgrind will falsely
trigger an invalid write. This appears to be due to the omission of
instructions to properly save, set up, and restore the frame pointer.
The IFUNC resolver is a leaf function since it only calls a function
that is inlined. So sometimes GCC omits the frame pointer instructions
in the resolver unless this optimization is explictly disabled.
This fixes https://bugzilla.redhat.com/show_bug.cgi?id=2267598.
Now that multi threaded encoding is the default, users do not need to
see a warning message everytime the number of threads is reduced. On
some machines, this could happen very often. It is not unreasonable for
users to need to set double verbose mode to see this kind of
information.
To see these warning messages -vv or --verbose --verbose must be passed
to set xz into the highest possible verbosity mode.
These warnings had caused automated testing frameworks to fail when they
expected no output to stderr.
Thanks to Sebastian Andrzej Siewior for reporting this and for the
initial version of the patch.
The previous Linux Landlock feature test assumed that having the
linux/landlock.h header file was enough. The new feature tests also
requires that prctl() and the required Landlock system calls are
supported.
If xz is given a directory, it should look like this:
$ xz /usr/bin
xz: /usr/bin: Is a directory, skipping
The Landlock rules didn't allow opening directories for reading:
$ xz /usr/bin
xz: /usr/bin: Permission denied
The simplest fix was to allow opening directories for reading.
While it's a bit silly to allow it solely for the error message,
it shouldn't make the sandbox significantly weaker.
The single-file use case (like when called from GNU tar) is
still as strict as possible: all Landlock restrictions are
enabled before (de)compression starts.
This makes these sandboxing methods stricter when no files are
created or deleted. That is, it's a middle ground between the
initial sandbox and the strictest single-file-to-stdout sandbox:
this allows opening files for reading but output has to go to stdout.
Linux 6.7 added support for ABI version 4 which restricts
TCP connections which xz won't need and thus those can be
forbidden now. Since the ABI version is handled at runtime,
supporting version 4 won't cause any compatibility issues.
Note that new enough kernel headers are required to get
version 4 support enabled at build time.
Landlock is now always used just like pledge(2) is: first in more
permissive mode and later (under certain common conditions) in
a strict mode that doesn't allow opening more files.
I put pledge(2) first in sandbox.c because it's the simplest API
to use and still somewhat fine-grained for basic applications.
So it's the simplest thing to understand for anyone reading sandbox.c.
Also explicitly initialize progress_automatic to make it clear
that it can be read before message_init() sets it. Static variable
was initialized to false by default already so this is only for
clarity.
GCC docs promise that it works and a few other compilers do
too. Clang/LLVM is documented source code only but unsurprisingly
it behaves the same as others on x86-64 at least. But the
certainly-portable way is good enough here so use that.
The x32 port has a x86-64 ABI in term of all registers but uses only
32bit pointer like x86-32. The assembly optimisation fails to compile on
x32. Given the state of x32 I suggest to exclude it from the
optimisation rather than trying to fix it.
Signed-off-by: Sebastian Andrzej Siewior <sebastian@breakpoint.cc>
It's used only for basic bittrees and fixed-size reverse bittree
because those showed a clear benefit on x86-64 with GCC and Clang.
The other methods were more mixed and thus are commented out but
they should be tested on other archs.
Now extra buffer space is reserved so that repeating bytes for
any single match will never need to copy from two places (both
the beginning and the end of the buffer). This simplifies
dict_repeat() and helps a little with speed.
This seems to reduce .lzma decompression time about 2 %, so
with .xz and CRC it could be slightly less. The small things
add up still.
It's not completely obvious if this is better in the decoder.
It should be good if compiler can avoid creating a branch
(like using CMOV on x86).
This also makes lzma_encoder.c use the new macros.
The new decoder resumes the first decoder loop in the Resumable mode.
Then, the code executes in Non-resumable mode until it detects that it
cannot guarantee to have enough input/output to decode another symbol.
The Resumable mode is how the decoder has always worked. Before decoding
every input bit, it checks if there is enough space and will save its
location to be resumed later. When the decoder has more input/output,
it jumps back to the correct sequence in the Resumable mode code.
When the input/output buffers are large, the Resumable mode is much
slower than the Non-resumable because it has more branches and is harder
for the compiler to optimize since it is in a large switch block.
Early benchmarking shows significant time improvement (8-10% on gcc and
clang x86) by using the Non-resumable code as much as possible.
The new "safe" range decoder mode is the same as old range decoder, but
now the default behavior of the range decoder will not check if there is
enough input or output to complete the operation. When the buffers are
close to fully consumed, the "safe" operations must be used instead. This
will improve speed because it will reduce the number of branches needed
for most of the range decoder operations.