parse certificate files, and golint

This commit is contained in:
AJ ONeal 2019-03-06 17:16:00 -07:00
джерело d823672eb4
коміт 1028c3baa5
3 змінених файлів з 196 додано та 51 видалено

@ -19,16 +19,17 @@ import (
"time"
)
var EInvalidPrivateKey = errors.New("PrivateKey must be of type *rsa.PrivateKey or *ecdsa.PrivateKey")
var EInvalidPublicKey = errors.New("PublicKey must be of type *rsa.PublicKey or *ecdsa.PublicKey")
var EParsePrivateKey = errors.New("PrivateKey bytes could not be parsed as PEM or DER (PKCS8, SEC1, or PKCS1) or JWK")
var EParseJWK = errors.New("JWK is missing required base64-encoded JSON fields")
var EInvalidKeyType = errors.New("The JWK's 'kty' must be either 'RSA' or 'EC'")
var EInvalidCurve = errors.New("The JWK's 'crv' must be either of the NIST standards 'P-256' or 'P-384'")
var ErrInvalidPrivateKey = errors.New("PrivateKey must be of type *rsa.PrivateKey or *ecdsa.PrivateKey")
var ErrInvalidPublicKey = errors.New("PublicKey must be of type *rsa.PublicKey or *ecdsa.PublicKey")
var ErrParsePublicKey = errors.New("PublicKey bytes could not be parsed as PEM or DER (PKIX/SPKI, PKCS1, or X509 Certificate) or JWK")
var ErrParsePrivateKey = errors.New("PrivateKey bytes could not be parsed as PEM or DER (PKCS8, SEC1, or PKCS1) or JWK")
var ErrParseJWK = errors.New("JWK is missing required base64-encoded JSON fields")
var ErrInvalidKeyType = errors.New("The JWK's 'kty' must be either 'RSA' or 'EC'")
var ErrInvalidCurve = errors.New("The JWK's 'crv' must be either of the NIST standards 'P-256' or 'P-384'")
const EDevSwapPrivatePublic = "[Developer Error] You passed either crypto.PrivateKey or crypto.PublicKey where the other was expected."
const ErrDevSwapPrivatePublic = "[Developer Error] You passed either crypto.PrivateKey or crypto.PublicKey where the other was expected."
const EDevBadKeyType = "[Developer Error] crypto.PublicKey and crypto.PrivateKey are somewhat deceptive. They're actually empty interfaces that accept any object, even non-crypto objects. You passed an object of type '%T' by mistake."
const ErrDevBadKeyType = "[Developer Error] crypto.PublicKey and crypto.PrivateKey are somewhat deceptive. They're actually empty interfaces that accept any object, even non-crypto objects. You passed an object of type '%T' by mistake."
// PrivateKey is a zero-cost typesafe substitue for crypto.PrivateKey
type PrivateKey interface {
@ -44,12 +45,14 @@ type PublicKey interface {
ExpiresAt() time.Time
}
// ECPublicKey adds common methods to *ecdsa.PublicKey for type safety
type ECPublicKey struct {
PublicKey *ecdsa.PublicKey // empty interface
KID string
Expiry time.Time
}
// RSAPublicKey adds common methods to *rsa.PublicKey for type safety
type RSAPublicKey struct {
PublicKey *rsa.PublicKey // empty interface
KID string
@ -113,20 +116,22 @@ func NewPublicKey(pub crypto.PublicKey, kid ...string) PublicKey {
}
k = rsakey
case *ecdsa.PrivateKey:
panic(errors.New(EDevSwapPrivatePublic))
panic(errors.New(ErrDevSwapPrivatePublic))
case *rsa.PrivateKey:
panic(errors.New(EDevSwapPrivatePublic))
panic(errors.New(ErrDevSwapPrivatePublic))
case *dsa.PublicKey:
panic(EInvalidPublicKey)
panic(ErrInvalidPublicKey)
case *dsa.PrivateKey:
panic(EInvalidPublicKey)
panic(ErrInvalidPublicKey)
default:
panic(errors.New(fmt.Sprintf(EDevBadKeyType, pub)))
panic(errors.New(fmt.Sprintf(ErrDevBadKeyType, pub)))
}
return k
}
// MarshalJWKPublicKey outputs a JWK with its key id (kid) and an optional expiration,
// making it suitable for use as an OIDC public key.
func MarshalJWKPublicKey(key PublicKey, exp ...time.Time) []byte {
// thumbprint keys are alphabetically sorted and only include the necessary public parts
switch k := key.Key().(type) {
@ -135,29 +140,35 @@ func MarshalJWKPublicKey(key PublicKey, exp ...time.Time) []byte {
case *ecdsa.PublicKey:
return MarshalECPublicKey(k, exp...)
case *dsa.PublicKey:
panic(EInvalidPublicKey)
panic(ErrInvalidPublicKey)
default:
// this is unreachable because we know the types that we pass in
log.Printf("keytype: %t, %+v\n", key, key)
panic(EInvalidPublicKey)
panic(ErrInvalidPublicKey)
}
}
func ThumbprintPublicKey(pub *PublicKey) string {
return ThumbprintUntypedPublicKey(pub)
// ThumbprintPublicKey returns the SHA256 RFC-spec JWK thumbprint
func ThumbprintPublicKey(pub PublicKey) string {
return ThumbprintUntypedPublicKey(pub.Key())
}
// ThumbprintUntypedPublicKey is a non-typesafe version of ThumbprintPublicKey
// (but will still panic, to help you discover bugs in development rather than production).
func ThumbprintUntypedPublicKey(pub crypto.PublicKey) string {
switch p := pub.(type) {
case PublicKey:
return ThumbprintUntypedPublicKey(p.Key())
case *ecdsa.PublicKey:
return ThumbprintECPublicKey(p)
case *rsa.PublicKey:
return ThumbprintRSAPublicKey(p)
default:
panic(EInvalidPublicKey)
panic(ErrInvalidPublicKey)
}
}
// MarshalECPublicKey will take an EC key and output a JWK, with optional expiration date
func MarshalECPublicKey(k *ecdsa.PublicKey, exp ...time.Time) []byte {
thumb := ThumbprintECPublicKey(k)
crv := k.Curve.Params().Name
@ -170,6 +181,7 @@ func MarshalECPublicKey(k *ecdsa.PublicKey, exp ...time.Time) []byte {
return []byte(fmt.Sprintf(`{"kid":%q,"use":"sig",%s"crv":%q,"kty":"EC","x":%q,"y":%q}`, thumb, expstr, crv, x, y))
}
// MarshalECPublicKeyWithoutKeyID will output the most minimal version of an EC JWK (no key id, no "use" flag, nada)
func MarshalECPublicKeyWithoutKeyID(k *ecdsa.PublicKey) []byte {
crv := k.Curve.Params().Name
x := base64.RawURLEncoding.EncodeToString(k.X.Bytes())
@ -177,12 +189,14 @@ func MarshalECPublicKeyWithoutKeyID(k *ecdsa.PublicKey) []byte {
return []byte(fmt.Sprintf(`{"crv":%q,"kty":"EC","x":%q,"y":%q}`, crv, x, y))
}
// ThumbprintECPublicKey will output a RFC-spec SHA256 JWK thumbprint of an EC public key
func ThumbprintECPublicKey(k *ecdsa.PublicKey) string {
thumbprintable := MarshalECPublicKeyWithoutKeyID(k)
sha := sha256.Sum256(thumbprintable)
return base64.RawURLEncoding.EncodeToString(sha[:])
}
// MarshalRSAPublicKey will take an RSA key and output a JWK, with optional expiration date
func MarshalRSAPublicKey(p *rsa.PublicKey, exp ...time.Time) []byte {
thumb := ThumbprintRSAPublicKey(p)
e := base64.RawURLEncoding.EncodeToString(big.NewInt(int64(p.E)).Bytes())
@ -194,36 +208,26 @@ func MarshalRSAPublicKey(p *rsa.PublicKey, exp ...time.Time) []byte {
return []byte(fmt.Sprintf(`{"kid":%q,"use":"sig",%s"e":%q,"kty":"RSA","n":%q}`, thumb, expstr, e, n))
}
// MarshalRSAPublicKeyWithoutKeyID will output the most minimal version of an RSA JWK (no key id, no "use" flag, nada)
func MarshalRSAPublicKeyWithoutKeyID(p *rsa.PublicKey) []byte {
e := base64.RawURLEncoding.EncodeToString(big.NewInt(int64(p.E)).Bytes())
n := base64.RawURLEncoding.EncodeToString(p.N.Bytes())
return []byte(fmt.Sprintf(`{"e":%q,"kty":"RSA","n":%q}`, e, n))
}
// ThumbprintRSAPublicKey will output a RFC-spec SHA256 JWK thumbprint of an EC public key
func ThumbprintRSAPublicKey(p *rsa.PublicKey) string {
thumbprintable := MarshalRSAPublicKeyWithoutKeyID(p)
sha := sha256.Sum256([]byte(thumbprintable))
return base64.RawURLEncoding.EncodeToString(sha[:])
}
// ParsePrivateKey will try to parse the bytes you give it
// in any of the supported formats: PEM, DER, PKCS8, PKCS1, SEC1, and JWK
func ParsePrivateKey(block []byte) (PrivateKey, error) {
var pemblock *pem.Block
var blocks = make([][]byte, 0, 1)
// Parse the PEM, if it's a pem
for {
pemblock, block = pem.Decode(block)
if nil != pemblock {
// got one block, there may be more
blocks = append(blocks, pemblock.Bytes)
} else {
// the last block was not a PEM block
// therefore the next isn't either
if 0 != len(block) {
blocks = append(blocks, block)
}
break
}
blocks, err := getPEMBytes(block)
if nil != err {
return nil, ErrParsePrivateKey
}
// Parse PEM blocks (openssl generates junk metadata blocks for ECs)
@ -236,9 +240,10 @@ func ParsePrivateKey(block []byte) (PrivateKey, error) {
}
// If we didn't parse a key arleady, we failed
return nil, EParsePrivateKey
return nil, ErrParsePrivateKey
}
// ParsePrivateKeyString calls ParsePrivateKey([]byte(key)) for all you lazy folk.
func ParsePrivateKeyString(block string) (PrivateKey, error) {
return ParsePrivateKey([]byte(block))
}
@ -255,7 +260,7 @@ func parsePrivateKey(der []byte) (PrivateKey, error) {
case *ecdsa.PrivateKey:
key = k
default:
// ignore nil and unknown key types
err = errors.New("Only RSA and ECDSA (EC) Private Keys are supported")
}
}
@ -282,6 +287,108 @@ func parsePrivateKey(der []byte) (PrivateKey, error) {
return key, nil
}
func getPEMBytes(block []byte) ([][]byte, error) {
var pemblock *pem.Block
var blocks = make([][]byte, 0, 1)
// Parse the PEM, if it's a pem
for {
pemblock, block = pem.Decode(block)
if nil != pemblock {
// got one block, there may be more
blocks = append(blocks, pemblock.Bytes)
} else {
// the last block was not a PEM block
// therefore the next isn't either
if 0 != len(block) {
blocks = append(blocks, block)
}
break
}
}
if len(blocks) > 0 {
return blocks, nil
} else {
return nil, errors.New("no PEM blocks found")
}
}
// ParsePrivateKey will try to parse the bytes you give it
// in any of the supported formats: PEM, DER, PKIX/SPKI, PKCS1, x509 Certificate, and JWK
func ParsePublicKey(block []byte) (PublicKey, error) {
blocks, err := getPEMBytes(block)
if nil != err {
return nil, ErrParsePublicKey
}
// Parse PEM blocks (openssl generates junk metadata blocks for ECs)
// or the original DER, or the JWK
for i, _ := range blocks {
block = blocks[i]
if key, err := parsePublicKey(block); nil == err {
return key, nil
}
}
// If we didn't parse a key arleady, we failed
return nil, ErrParsePublicKey
}
// ParsePublicKeyString calls ParsePublicKey([]byte(key)) for all you lazy folk.
func ParsePublicKeyString(block string) (PublicKey, error) {
return ParsePublicKey([]byte(block))
}
func parsePublicKey(der []byte) (PublicKey, error) {
var key PublicKey
cert, err := x509.ParseCertificate(der)
if nil == err {
switch k := cert.PublicKey.(type) {
case *rsa.PublicKey:
return NewPublicKey(k), nil
case *ecdsa.PublicKey:
return NewPublicKey(k), nil
default:
err = errors.New("Only RSA and ECDSA (EC) Public Keys are supported")
}
}
//fmt.Println("1. ParsePKIXPublicKey")
xkey, err := x509.ParsePKIXPublicKey(der)
if nil == err {
switch k := xkey.(type) {
case *rsa.PublicKey:
return NewPublicKey(k), nil
case *ecdsa.PublicKey:
return NewPublicKey(k), nil
default:
err = errors.New("Only RSA and ECDSA (EC) Public Keys are supported")
}
}
if nil != err {
//fmt.Println("3. ParsePKCS1PrublicKey")
keyx, err := x509.ParsePKCS1PublicKey(der)
key = NewPublicKey(keyx)
if nil != err {
//fmt.Println("4. ParseJWKPublicKey")
key, err = ParseJWKPublicKey(der)
}
}
// But did you know?
// You must return nil explicitly for interfaces
// https://golang.org/doc/faq#nil_error
if nil != err {
return nil, err
}
return key, nil
}
// NewJWKPublicKey contstructs a PublicKey from the relevant pieces a map[string]string (generic JSON)
func NewJWKPublicKey(m map[string]string) (PublicKey, error) {
switch m["kty"] {
case "RSA":
@ -289,22 +396,26 @@ func NewJWKPublicKey(m map[string]string) (PublicKey, error) {
case "EC":
return parseECPublicKey(m)
default:
return nil, EInvalidKeyType
return nil, ErrInvalidKeyType
}
}
// ParseJWKPublicKey parses a JSON-encoded JWK and returns a PublicKey, or a (hopefully) helpful error message
func ParseJWKPublicKey(b []byte) (PublicKey, error) {
return newJWKPublicKey(b)
}
// ParseJWKPublicKeyString calls ParseJWKPublicKey([]byte(key)) for all you lazy folk.
func ParseJWKPublicKeyString(s string) (PublicKey, error) {
return newJWKPublicKey(s)
}
// DecodeJWKPublicKey stream-decodes a JSON-encoded JWK and returns a PublicKey, or a (hopefully) helpful error message
func DecodeJWKPublicKey(r io.Reader) (PublicKey, error) {
return newJWKPublicKey(r)
}
// the underpinnings of the parser as used by the typesafe wrappers
func newJWKPublicKey(data interface{}) (PublicKey, error) {
var m map[string]string
@ -331,6 +442,7 @@ func newJWKPublicKey(data interface{}) (PublicKey, error) {
return NewJWKPublicKey(m)
}
// ParseJWKPrivateKey parses a JSON-encoded JWK and returns a PrivateKey, or a (hopefully) helpful error message
func ParseJWKPrivateKey(b []byte) (PrivateKey, error) {
var m map[string]string
if err := json.Unmarshal(b, &m); nil != err {
@ -343,7 +455,7 @@ func ParseJWKPrivateKey(b []byte) (PrivateKey, error) {
case "EC":
return parseECPrivateKey(m)
default:
return nil, EInvalidKeyType
return nil, ErrInvalidKeyType
}
}
@ -353,7 +465,7 @@ func parseRSAPublicKey(m map[string]string) (*RSAPublicKey, error) {
n, _ := base64.RawURLEncoding.DecodeString(m["n"])
e, _ := base64.RawURLEncoding.DecodeString(m["e"])
if 0 == len(n) || 0 == len(e) {
return nil, EParseJWK
return nil, ErrParseJWK
}
ni := &big.Int{}
ni.SetBytes(n)
@ -384,7 +496,7 @@ func parseRSAPrivateKey(m map[string]string) (key *rsa.PrivateKey, err error) {
dq, _ := base64.RawURLEncoding.DecodeString(m["dq"])
qinv, _ := base64.RawURLEncoding.DecodeString(m["qi"])
if 0 == len(d) || 0 == len(p) || 0 == len(dp) || 0 == len(dq) || 0 == len(qinv) {
return nil, EParseJWK
return nil, ErrParseJWK
}
di := &big.Int{}
@ -420,7 +532,7 @@ func parseECPublicKey(m map[string]string) (*ECPublicKey, error) {
x, _ := base64.RawURLEncoding.DecodeString(m["x"])
y, _ := base64.RawURLEncoding.DecodeString(m["y"])
if 0 == len(x) || 0 == len(y) || 0 == len(m["crv"]) {
return nil, EParseJWK
return nil, ErrParseJWK
}
xi := &big.Int{}
@ -438,7 +550,7 @@ func parseECPublicKey(m map[string]string) (*ECPublicKey, error) {
case "P-521":
crv = elliptic.P521()
default:
return nil, EInvalidCurve
return nil, ErrInvalidCurve
}
pub := &ecdsa.PublicKey{
@ -461,7 +573,7 @@ func parseECPrivateKey(m map[string]string) (*ecdsa.PrivateKey, error) {
d, _ := base64.RawURLEncoding.DecodeString(m["d"])
if 0 == len(d) {
return nil, EParseJWK
return nil, ErrParseJWK
}
di := &big.Int{}
di.SetBytes(d)

@ -4,6 +4,8 @@ import (
"crypto/ecdsa"
"crypto/rsa"
"io/ioutil"
"log"
"net/http"
"testing"
)
@ -67,3 +69,19 @@ func TestParsePrivateKeyRSA(t *testing.T) {
}
}
}
func TestParseCertificate(t *testing.T) {
resp, err := http.Get("http://bigsquid.auth0.com/pem")
if nil != err {
log.Fatal(err)
}
bytes, err := ioutil.ReadAll(resp.Body)
if nil != err {
log.Fatal(err)
}
_, err = ParsePublicKey(bytes)
if nil != err {
log.Fatal("Could not parse PEM/cert from auth0")
log.Fatal(err)
}
}

@ -6,6 +6,7 @@ import (
"crypto/elliptic"
"crypto/rand"
"encoding/json"
"io/ioutil"
"log"
"net/http"
"os"
@ -16,9 +17,9 @@ import (
)
func TestServeKeys(t *testing.T) {
key, _ := ecdsa.GenerateKey(elliptic.P256(), rand.Reader)
eckey, _ := ecdsa.GenerateKey(elliptic.P256(), rand.Reader)
pubs := []keypairs.PublicKey{
keypairs.NewPublicKey(key.Public()),
keypairs.NewPublicKey(eckey.Public()),
}
addr := ":62017"
@ -48,12 +49,12 @@ func TestServeKeys(t *testing.T) {
m := map[string]string{}
resp, err := http.Get("http://localhost" + addr + "/.well-known/openid-configuration")
if nil != err {
panic(err)
log.Fatal(err)
}
dec := json.NewDecoder(resp.Body)
err = dec.Decode(&m)
if nil != err {
panic(err)
log.Fatal(err)
}
n := struct {
@ -63,15 +64,29 @@ func TestServeKeys(t *testing.T) {
}
resp, err = http.Get(m["jwks_uri"])
if nil != err {
panic(err)
log.Fatal(err)
}
dec = json.NewDecoder(resp.Body)
err = dec.Decode(&n)
if nil != err {
panic(err)
log.Fatal(err)
}
h.Shutdown(context.Background())
resp, err = http.Get("http://localhost" + addr + "/pem")
if nil != err {
log.Fatal(err)
}
bytes, err := ioutil.ReadAll(resp.Body)
if nil != err {
log.Fatal(err)
}
_, err = keypairs.ParsePublicKey(bytes)
if nil != err {
log.Fatal("Could not parse PEM/cert from self")
log.Fatal(err)
}
h.Shutdown(context.Background())
<-done
}