mirror of
				https://git.tukaani.org/xz.git
				synced 2025-11-04 07:22:55 +00:00 
			
		
		
		
	
		
			
				
	
	
		
			566 lines
		
	
	
		
			18 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			566 lines
		
	
	
		
			18 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
///////////////////////////////////////////////////////////////////////////////
 | 
						|
//
 | 
						|
/// \file       crc64.c
 | 
						|
/// \brief      CRC64 calculation
 | 
						|
///
 | 
						|
/// There are two methods in this file. crc64_generic uses the
 | 
						|
/// the slice-by-four algorithm. This is the same idea that is
 | 
						|
/// used in crc32_fast.c, but for CRC64 we use only four tables
 | 
						|
/// instead of eight to avoid increasing CPU cache usage.
 | 
						|
///
 | 
						|
/// crc64_clmul uses 32/64-bit x86 SSSE3, SSE4.1, and CLMUL instructions.
 | 
						|
/// It was derived from
 | 
						|
/// https://www.intel.com/content/dam/www/public/us/en/documents/white-papers/fast-crc-computation-generic-polynomials-pclmulqdq-paper.pdf
 | 
						|
/// and the public domain code from https://github.com/rawrunprotected/crc
 | 
						|
/// (URLs were checked on 2022-11-07).
 | 
						|
///
 | 
						|
/// FIXME: Builds for 32-bit x86 use crc64_x86.S by default instead
 | 
						|
/// of this file and thus CLMUL version isn't available on 32-bit x86
 | 
						|
/// unless configured with --disable-assembler. Even then the lookup table
 | 
						|
/// isn't omitted in crc64_table.c since it doesn't know that assembly
 | 
						|
/// code has been disabled.
 | 
						|
//
 | 
						|
//  Authors:    Lasse Collin
 | 
						|
//              Ilya Kurdyukov
 | 
						|
//
 | 
						|
//  This file has been put into the public domain.
 | 
						|
//  You can do whatever you want with this file.
 | 
						|
//
 | 
						|
///////////////////////////////////////////////////////////////////////////////
 | 
						|
 | 
						|
#include "check.h"
 | 
						|
 | 
						|
#undef CRC_GENERIC
 | 
						|
#undef CRC_CLMUL
 | 
						|
#undef CRC_USE_GENERIC_FOR_SMALL_INPUTS
 | 
						|
 | 
						|
// If CLMUL cannot be used then only the generic slice-by-four is built.
 | 
						|
#if !defined(HAVE_USABLE_CLMUL)
 | 
						|
#	define CRC_GENERIC 1
 | 
						|
 | 
						|
// If CLMUL is allowed unconditionally in the compiler options then the
 | 
						|
// generic version can be omitted. Note that this doesn't work with MSVC
 | 
						|
// as I don't know how to detect the features here.
 | 
						|
//
 | 
						|
// NOTE: Keep this this in sync with crc64_table.c.
 | 
						|
#elif (defined(__SSSE3__) && defined(__SSE4_1__) && defined(__PCLMUL__)) \
 | 
						|
		|| (defined(__e2k__) && __iset__ >= 6)
 | 
						|
#	define CRC_CLMUL 1
 | 
						|
 | 
						|
// Otherwise build both and detect at runtime which version to use.
 | 
						|
#else
 | 
						|
#	define CRC_GENERIC 1
 | 
						|
#	define CRC_CLMUL 1
 | 
						|
 | 
						|
/*
 | 
						|
	// The generic code is much faster with 1-8-byte inputs and has
 | 
						|
	// similar performance up to 16 bytes  at least in microbenchmarks
 | 
						|
	// (it depends on input buffer alignment too). If both versions are
 | 
						|
	// built, this #define will use the generic version for inputs up to
 | 
						|
	// 16 bytes and CLMUL for bigger inputs. It saves a little in code
 | 
						|
	// size since the special cases for 0-16-byte inputs will be omitted
 | 
						|
	// from the CLMUL code.
 | 
						|
#	define CRC_USE_GENERIC_FOR_SMALL_INPUTS 1
 | 
						|
*/
 | 
						|
 | 
						|
#	if defined(_MSC_VER)
 | 
						|
#		include <intrin.h>
 | 
						|
#	elif defined(HAVE_CPUID_H)
 | 
						|
#		include <cpuid.h>
 | 
						|
#	endif
 | 
						|
#endif
 | 
						|
 | 
						|
 | 
						|
/////////////////////////////////
 | 
						|
// Generic slice-by-four CRC64 //
 | 
						|
/////////////////////////////////
 | 
						|
 | 
						|
#ifdef CRC_GENERIC
 | 
						|
 | 
						|
#include "crc_macros.h"
 | 
						|
 | 
						|
 | 
						|
#ifdef WORDS_BIGENDIAN
 | 
						|
#	define A1(x) ((x) >> 56)
 | 
						|
#else
 | 
						|
#	define A1 A
 | 
						|
#endif
 | 
						|
 | 
						|
 | 
						|
// See the comments in crc32_fast.c. They aren't duplicated here.
 | 
						|
static uint64_t
 | 
						|
crc64_generic(const uint8_t *buf, size_t size, uint64_t crc)
 | 
						|
{
 | 
						|
	crc = ~crc;
 | 
						|
 | 
						|
#ifdef WORDS_BIGENDIAN
 | 
						|
	crc = bswap64(crc);
 | 
						|
#endif
 | 
						|
 | 
						|
	if (size > 4) {
 | 
						|
		while ((uintptr_t)(buf) & 3) {
 | 
						|
			crc = lzma_crc64_table[0][*buf++ ^ A1(crc)] ^ S8(crc);
 | 
						|
			--size;
 | 
						|
		}
 | 
						|
 | 
						|
		const uint8_t *const limit = buf + (size & ~(size_t)(3));
 | 
						|
		size &= (size_t)(3);
 | 
						|
 | 
						|
		while (buf < limit) {
 | 
						|
#ifdef WORDS_BIGENDIAN
 | 
						|
			const uint32_t tmp = (uint32_t)(crc >> 32)
 | 
						|
					^ aligned_read32ne(buf);
 | 
						|
#else
 | 
						|
			const uint32_t tmp = (uint32_t)crc
 | 
						|
					^ aligned_read32ne(buf);
 | 
						|
#endif
 | 
						|
			buf += 4;
 | 
						|
 | 
						|
			crc = lzma_crc64_table[3][A(tmp)]
 | 
						|
			    ^ lzma_crc64_table[2][B(tmp)]
 | 
						|
			    ^ S32(crc)
 | 
						|
			    ^ lzma_crc64_table[1][C(tmp)]
 | 
						|
			    ^ lzma_crc64_table[0][D(tmp)];
 | 
						|
		}
 | 
						|
	}
 | 
						|
 | 
						|
	while (size-- != 0)
 | 
						|
		crc = lzma_crc64_table[0][*buf++ ^ A1(crc)] ^ S8(crc);
 | 
						|
 | 
						|
#ifdef WORDS_BIGENDIAN
 | 
						|
	crc = bswap64(crc);
 | 
						|
#endif
 | 
						|
 | 
						|
	return ~crc;
 | 
						|
}
 | 
						|
#endif
 | 
						|
 | 
						|
 | 
						|
/////////////////////
 | 
						|
// x86 CLMUL CRC64 //
 | 
						|
/////////////////////
 | 
						|
 | 
						|
#ifdef CRC_CLMUL
 | 
						|
 | 
						|
#include <immintrin.h>
 | 
						|
 | 
						|
 | 
						|
/*
 | 
						|
// These functions were used to generate the constants
 | 
						|
// at the top of crc64_clmul().
 | 
						|
static uint64_t
 | 
						|
calc_lo(uint64_t poly)
 | 
						|
{
 | 
						|
	uint64_t a = poly;
 | 
						|
	uint64_t b = 0;
 | 
						|
 | 
						|
	for (unsigned i = 0; i < 64; ++i) {
 | 
						|
		b = (b >> 1) | (a << 63);
 | 
						|
		a = (a >> 1) ^ (a & 1 ? poly : 0);
 | 
						|
	}
 | 
						|
 | 
						|
	return b;
 | 
						|
}
 | 
						|
 | 
						|
static uint64_t
 | 
						|
calc_hi(uint64_t poly, uint64_t a)
 | 
						|
{
 | 
						|
	for (unsigned i = 0; i < 64; ++i)
 | 
						|
		a = (a >> 1) ^ (a & 1 ? poly : 0);
 | 
						|
 | 
						|
	return a;
 | 
						|
}
 | 
						|
*/
 | 
						|
 | 
						|
 | 
						|
#define MASK_L(in, mask, r) \
 | 
						|
	r = _mm_shuffle_epi8(in, mask)
 | 
						|
 | 
						|
#define MASK_H(in, mask, r) \
 | 
						|
	r = _mm_shuffle_epi8(in, _mm_xor_si128(mask, vsign))
 | 
						|
 | 
						|
#define MASK_LH(in, mask, low, high) \
 | 
						|
	MASK_L(in, mask, low); \
 | 
						|
	MASK_H(in, mask, high)
 | 
						|
 | 
						|
 | 
						|
// MSVC (VS2015 - VS2022) produces bad 32-bit x86 code from the CLMUL CRC
 | 
						|
// code when optimizations are enabled (release build). According to the bug
 | 
						|
// report, the ebx register is corrupted and the calculated result is wrong.
 | 
						|
// Trying to workaround the problem with "__asm mov ebx, ebx" didn't help.
 | 
						|
// The following pragma works and performance is still good. x86-64 builds
 | 
						|
// aren't affected by this problem.
 | 
						|
//
 | 
						|
// NOTE: Another pragma after the function restores the optimizations.
 | 
						|
// If the #if condition here is updated, the other one must be updated too.
 | 
						|
#if defined(_MSC_VER) && !defined(__INTEL_COMPILER) && !defined(__clang__) \
 | 
						|
		&& defined(_M_IX86)
 | 
						|
#	pragma optimize("g", off)
 | 
						|
#endif
 | 
						|
 | 
						|
// EDG-based compilers (Intel's classic compiler and compiler for E2K) can
 | 
						|
// define __GNUC__ but the attribute must not be used with them.
 | 
						|
// The new Clang-based ICX needs the attribute.
 | 
						|
//
 | 
						|
// NOTE: Build systems check for this too, keep them in sync with this.
 | 
						|
#if (defined(__GNUC__) || defined(__clang__)) && !defined(__EDG__)
 | 
						|
__attribute__((__target__("ssse3,sse4.1,pclmul")))
 | 
						|
#endif
 | 
						|
// The intrinsics use 16-byte-aligned reads from buf, thus they may read
 | 
						|
// up to 15 bytes before or after the buffer (depending on the alignment
 | 
						|
// of the buf argument). The values of the extra bytes are ignored.
 | 
						|
// This unavoidably trips -fsanitize=address so address sanitizier has
 | 
						|
// to be disabled for this function.
 | 
						|
#if lzma_has_attribute(__no_sanitize_address__)
 | 
						|
__attribute__((__no_sanitize_address__))
 | 
						|
#endif
 | 
						|
static uint64_t
 | 
						|
crc64_clmul(const uint8_t *buf, size_t size, uint64_t crc)
 | 
						|
{
 | 
						|
	// The prototypes of the intrinsics use signed types while most of
 | 
						|
	// the values are treated as unsigned here. These warnings in this
 | 
						|
	// function have been checked and found to be harmless so silence them.
 | 
						|
#if TUKLIB_GNUC_REQ(4, 6) || defined(__clang__)
 | 
						|
#	pragma GCC diagnostic push
 | 
						|
#	pragma GCC diagnostic ignored "-Wsign-conversion"
 | 
						|
#	pragma GCC diagnostic ignored "-Wconversion"
 | 
						|
#endif
 | 
						|
 | 
						|
#ifndef CRC_USE_GENERIC_FOR_SMALL_INPUTS
 | 
						|
	// The code assumes that there is at least one byte of input.
 | 
						|
	if (size == 0)
 | 
						|
		return crc;
 | 
						|
#endif
 | 
						|
 | 
						|
	// const uint64_t poly = 0xc96c5795d7870f42; // CRC polynomial
 | 
						|
	const uint64_t p  = 0x92d8af2baf0e1e85; // (poly << 1) | 1
 | 
						|
	const uint64_t mu = 0x9c3e466c172963d5; // (calc_lo(poly) << 1) | 1
 | 
						|
	const uint64_t k2 = 0xdabe95afc7875f40; // calc_hi(poly, 1)
 | 
						|
	const uint64_t k1 = 0xe05dd497ca393ae4; // calc_hi(poly, k2)
 | 
						|
	const __m128i vfold0 = _mm_set_epi64x(p, mu);
 | 
						|
	const __m128i vfold1 = _mm_set_epi64x(k2, k1);
 | 
						|
 | 
						|
	// Create a vector with 8-bit values 0 to 15. This is used to
 | 
						|
	// construct control masks for _mm_blendv_epi8 and _mm_shuffle_epi8.
 | 
						|
	const __m128i vramp = _mm_setr_epi32(
 | 
						|
			0x03020100, 0x07060504, 0x0b0a0908, 0x0f0e0d0c);
 | 
						|
 | 
						|
	// This is used to inverse the control mask of _mm_shuffle_epi8
 | 
						|
	// so that bytes that wouldn't be picked with the original mask
 | 
						|
	// will be picked and vice versa.
 | 
						|
	const __m128i vsign = _mm_set1_epi8(0x80);
 | 
						|
 | 
						|
	// Memory addresses A to D and the distances between them:
 | 
						|
	//
 | 
						|
	//     A           B     C         D
 | 
						|
	//     [skip_start][size][skip_end]
 | 
						|
	//     [     size2      ]
 | 
						|
	//
 | 
						|
	// A and D are 16-byte aligned. B and C are 1-byte aligned.
 | 
						|
	// skip_start and skip_end are 0-15 bytes. size is at least 1 byte.
 | 
						|
	//
 | 
						|
	// A = aligned_buf will initially point to this address.
 | 
						|
	// B = The address pointed by the caller-supplied buf.
 | 
						|
	// C = buf + size == aligned_buf + size2
 | 
						|
	// D = buf + size + skip_end == aligned_buf + size2 + skip_end
 | 
						|
	const size_t skip_start = (size_t)((uintptr_t)buf & 15);
 | 
						|
	const size_t skip_end = (size_t)((0U - (uintptr_t)(buf + size)) & 15);
 | 
						|
	const __m128i *aligned_buf = (const __m128i *)(
 | 
						|
			(uintptr_t)buf & ~(uintptr_t)15);
 | 
						|
 | 
						|
	// If size2 <= 16 then the whole input fits into a single 16-byte
 | 
						|
	// vector. If size2 > 16 then at least two 16-byte vectors must
 | 
						|
	// be processed. If size2 > 16 && size <= 16 then there is only
 | 
						|
	// one 16-byte vector's worth of input but it is unaligned in memory.
 | 
						|
	//
 | 
						|
	// NOTE: There is no integer overflow here if the arguments are valid.
 | 
						|
	// If this overflowed, buf + size would too.
 | 
						|
	size_t size2 = skip_start + size;
 | 
						|
 | 
						|
	// Masks to be used with _mm_blendv_epi8 and _mm_shuffle_epi8:
 | 
						|
	// The first skip_start or skip_end bytes in the vectors will have
 | 
						|
	// the high bit (0x80) set. _mm_blendv_epi8 and _mm_shuffle_epi8
 | 
						|
	// will produce zeros for these positions. (Bitwise-xor of these
 | 
						|
	// masks with vsign will produce the opposite behavior.)
 | 
						|
	const __m128i mask_start
 | 
						|
			= _mm_sub_epi8(vramp, _mm_set1_epi8(skip_start));
 | 
						|
	const __m128i mask_end = _mm_sub_epi8(vramp, _mm_set1_epi8(skip_end));
 | 
						|
 | 
						|
	// Get the first 1-16 bytes into data0. If loading less than 16 bytes,
 | 
						|
	// the bytes are loaded to the high bits of the vector and the least
 | 
						|
	// significant positions are filled with zeros.
 | 
						|
	const __m128i data0 = _mm_blendv_epi8(_mm_load_si128(aligned_buf),
 | 
						|
			_mm_setzero_si128(), mask_start);
 | 
						|
	++aligned_buf;
 | 
						|
 | 
						|
#if defined(__i386__) || defined(_M_IX86)
 | 
						|
	const __m128i initial_crc = _mm_set_epi64x(0, ~crc);
 | 
						|
#else
 | 
						|
	// GCC and Clang would produce good code with _mm_set_epi64x
 | 
						|
	// but MSVC needs _mm_cvtsi64_si128 on x86-64.
 | 
						|
	const __m128i initial_crc = _mm_cvtsi64_si128(~crc);
 | 
						|
#endif
 | 
						|
 | 
						|
	__m128i v0, v1, v2, v3;
 | 
						|
 | 
						|
#ifndef CRC_USE_GENERIC_FOR_SMALL_INPUTS
 | 
						|
	if (size <= 16) {
 | 
						|
		// Right-shift initial_crc by 1-16 bytes based on "size"
 | 
						|
		// and store the result in v1 (high bytes) and v0 (low bytes).
 | 
						|
		//
 | 
						|
		// NOTE: The highest 8 bytes of initial_crc are zeros so
 | 
						|
		// v1 will be filled with zeros if size >= 8. The highest 8
 | 
						|
		// bytes of v1 will always become zeros.
 | 
						|
		//
 | 
						|
		// [      v1      ][      v0      ]
 | 
						|
		//  [ initial_crc  ]                  size == 1
 | 
						|
		//   [ initial_crc  ]                 size == 2
 | 
						|
		//                [ initial_crc  ]    size == 15
 | 
						|
		//                 [ initial_crc  ]   size == 16 (all in v0)
 | 
						|
		const __m128i mask_low = _mm_add_epi8(
 | 
						|
				vramp, _mm_set1_epi8(size - 16));
 | 
						|
		MASK_LH(initial_crc, mask_low, v0, v1);
 | 
						|
 | 
						|
		if (size2 <= 16) {
 | 
						|
			// There are 1-16 bytes of input and it is all
 | 
						|
			// in data0. Copy the input bytes to v3. If there
 | 
						|
			// are fewer than 16 bytes, the low bytes in v3
 | 
						|
			// will be filled with zeros. That is, the input
 | 
						|
			// bytes are stored to the same position as
 | 
						|
			// (part of) initial_crc is in v0.
 | 
						|
			MASK_L(data0, mask_end, v3);
 | 
						|
		} else {
 | 
						|
			// There are 2-16 bytes of input but not all bytes
 | 
						|
			// are in data0.
 | 
						|
			const __m128i data1 = _mm_load_si128(aligned_buf);
 | 
						|
 | 
						|
			// Collect the 2-16 input bytes from data0 and data1
 | 
						|
			// to v2 and v3, and bitwise-xor them with the
 | 
						|
			// low bits of initial_crc in v0. Note that the
 | 
						|
			// the second xor is below this else-block as it
 | 
						|
			// is shared with the other branch.
 | 
						|
			MASK_H(data0, mask_end, v2);
 | 
						|
			MASK_L(data1, mask_end, v3);
 | 
						|
			v0 = _mm_xor_si128(v0, v2);
 | 
						|
		}
 | 
						|
 | 
						|
		v0 = _mm_xor_si128(v0, v3);
 | 
						|
		v1 = _mm_alignr_epi8(v1, v0, 8);
 | 
						|
	} else
 | 
						|
#endif
 | 
						|
	{
 | 
						|
		const __m128i data1 = _mm_load_si128(aligned_buf);
 | 
						|
		MASK_LH(initial_crc, mask_start, v0, v1);
 | 
						|
		v0 = _mm_xor_si128(v0, data0);
 | 
						|
		v1 = _mm_xor_si128(v1, data1);
 | 
						|
 | 
						|
#define FOLD \
 | 
						|
	v1 = _mm_xor_si128(v1, _mm_clmulepi64_si128(v0, vfold1, 0x00)); \
 | 
						|
	v0 = _mm_xor_si128(v1, _mm_clmulepi64_si128(v0, vfold1, 0x11));
 | 
						|
 | 
						|
		while (size2 > 32) {
 | 
						|
			++aligned_buf;
 | 
						|
			size2 -= 16;
 | 
						|
			FOLD
 | 
						|
			v1 = _mm_load_si128(aligned_buf);
 | 
						|
		}
 | 
						|
 | 
						|
		if (size2 < 32) {
 | 
						|
			MASK_H(v0, mask_end, v2);
 | 
						|
			MASK_L(v0, mask_end, v0);
 | 
						|
			MASK_L(v1, mask_end, v3);
 | 
						|
			v1 = _mm_or_si128(v2, v3);
 | 
						|
		}
 | 
						|
 | 
						|
		FOLD
 | 
						|
		v1 = _mm_srli_si128(v0, 8);
 | 
						|
#undef FOLD
 | 
						|
	}
 | 
						|
 | 
						|
	v1 = _mm_xor_si128(_mm_clmulepi64_si128(v0, vfold1, 0x10), v1);
 | 
						|
	v0 = _mm_clmulepi64_si128(v1, vfold0, 0x00);
 | 
						|
	v2 = _mm_clmulepi64_si128(v0, vfold0, 0x10);
 | 
						|
	v0 = _mm_xor_si128(_mm_xor_si128(v2, _mm_slli_si128(v0, 8)), v1);
 | 
						|
 | 
						|
#if defined(__i386__) || defined(_M_IX86)
 | 
						|
	return ~(((uint64_t)(uint32_t)_mm_extract_epi32(v0, 3) << 32) |
 | 
						|
			(uint64_t)(uint32_t)_mm_extract_epi32(v0, 2));
 | 
						|
#else
 | 
						|
	return ~(uint64_t)_mm_extract_epi64(v0, 1);
 | 
						|
#endif
 | 
						|
 | 
						|
#if TUKLIB_GNUC_REQ(4, 6) || defined(__clang__)
 | 
						|
#	pragma GCC diagnostic pop
 | 
						|
#endif
 | 
						|
}
 | 
						|
#if defined(_MSC_VER) && !defined(__INTEL_COMPILER) && !defined(__clang__) \
 | 
						|
		&& defined(_M_IX86)
 | 
						|
#	pragma optimize("", on)
 | 
						|
#endif
 | 
						|
#endif
 | 
						|
 | 
						|
 | 
						|
////////////////////////
 | 
						|
// Detect CPU support //
 | 
						|
////////////////////////
 | 
						|
 | 
						|
#if defined(CRC_GENERIC) && defined(CRC_CLMUL)
 | 
						|
static inline bool
 | 
						|
is_clmul_supported(void)
 | 
						|
{
 | 
						|
	int success = 1;
 | 
						|
	uint32_t r[4]; // eax, ebx, ecx, edx
 | 
						|
 | 
						|
#if defined(_MSC_VER)
 | 
						|
	// This needs <intrin.h> with MSVC. ICC has it as a built-in
 | 
						|
	// on all platforms.
 | 
						|
	__cpuid(r, 1);
 | 
						|
#elif defined(HAVE_CPUID_H)
 | 
						|
	// Compared to just using __asm__ to run CPUID, this also checks
 | 
						|
	// that CPUID is supported and saves and restores ebx as that is
 | 
						|
	// needed with GCC < 5 with position-independent code (PIC).
 | 
						|
	success = __get_cpuid(1, &r[0], &r[1], &r[2], &r[3]);
 | 
						|
#else
 | 
						|
	// Just a fallback that shouldn't be needed.
 | 
						|
	__asm__("cpuid\n\t"
 | 
						|
			: "=a"(r[0]), "=b"(r[1]), "=c"(r[2]), "=d"(r[3])
 | 
						|
			: "a"(1), "c"(0));
 | 
						|
#endif
 | 
						|
 | 
						|
	// Returns true if these are supported:
 | 
						|
	// CLMUL (bit 1 in ecx)
 | 
						|
	// SSSE3 (bit 9 in ecx)
 | 
						|
	// SSE4.1 (bit 19 in ecx)
 | 
						|
	const uint32_t ecx_mask = (1 << 1) | (1 << 9) | (1 << 19);
 | 
						|
	return success && (r[2] & ecx_mask) == ecx_mask;
 | 
						|
 | 
						|
	// Alternative methods that weren't used:
 | 
						|
	//   - ICC's _may_i_use_cpu_feature: the other methods should work too.
 | 
						|
	//   - GCC >= 6 / Clang / ICX __builtin_cpu_supports("pclmul")
 | 
						|
	//
 | 
						|
	// CPUID decding is needed with MSVC anyway and older GCC. This keeps
 | 
						|
	// the feature checks in the build system simpler too. The nice thing
 | 
						|
	// about __builtin_cpu_supports would be that it generates very short
 | 
						|
	// code as is it only reads a variable set at startup but a few bytes
 | 
						|
	// doesn't matter here.
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
typedef uint64_t (*crc64_func_type)(
 | 
						|
		const uint8_t *buf, size_t size, uint64_t crc);
 | 
						|
 | 
						|
// Clang 16.0.0 and older has a bug where it marks the ifunc resolver
 | 
						|
// function as unused since it is static and never used outside of
 | 
						|
// __attribute__((__ifunc__())).
 | 
						|
#if defined(HAVE_FUNC_ATTRIBUTE_IFUNC) && defined(__clang__)
 | 
						|
#	pragma GCC diagnostic push
 | 
						|
#	pragma GCC diagnostic ignored "-Wunused-function"
 | 
						|
#endif
 | 
						|
 | 
						|
static crc64_func_type
 | 
						|
crc64_resolve(void)
 | 
						|
{
 | 
						|
	return is_clmul_supported() ? &crc64_clmul : &crc64_generic;
 | 
						|
}
 | 
						|
 | 
						|
#if defined(HAVE_FUNC_ATTRIBUTE_IFUNC) && defined(__clang__)
 | 
						|
#	pragma GCC diagnostic pop
 | 
						|
#endif
 | 
						|
 | 
						|
#ifndef HAVE_FUNC_ATTRIBUTE_IFUNC
 | 
						|
 | 
						|
#ifdef HAVE_FUNC_ATTRIBUTE_CONSTRUCTOR
 | 
						|
#	define CRC64_SET_FUNC_ATTR __attribute__((__constructor__))
 | 
						|
static crc64_func_type crc64_func;
 | 
						|
#else
 | 
						|
#	define CRC64_SET_FUNC_ATTR
 | 
						|
static uint64_t crc64_dispatch(const uint8_t *buf, size_t size, uint64_t crc);
 | 
						|
static crc64_func_type crc64_func = &crc64_dispatch;
 | 
						|
#endif
 | 
						|
 | 
						|
 | 
						|
CRC64_SET_FUNC_ATTR
 | 
						|
static void
 | 
						|
crc64_set_func(void)
 | 
						|
{
 | 
						|
	crc64_func = crc64_resolve();
 | 
						|
	return;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
#ifndef HAVE_FUNC_ATTRIBUTE_CONSTRUCTOR
 | 
						|
static uint64_t
 | 
						|
crc64_dispatch(const uint8_t *buf, size_t size, uint64_t crc)
 | 
						|
{
 | 
						|
	// When __attribute__((__ifunc__(...))) and
 | 
						|
	// __attribute__((__constructor__)) isn't supported, set the
 | 
						|
	// function pointer without any locking. If multiple threads run
 | 
						|
	// the detection code in parallel, they will all end up setting
 | 
						|
	// the pointer to the same value. This avoids the use of
 | 
						|
	// mythread_once() on every call to lzma_crc64() but this likely
 | 
						|
	// isn't strictly standards compliant. Let's change it if it breaks.
 | 
						|
	crc64_set_func();
 | 
						|
	return crc64_func(buf, size, crc);
 | 
						|
}
 | 
						|
#endif
 | 
						|
#endif
 | 
						|
#endif
 | 
						|
 | 
						|
 | 
						|
#if defined(CRC_GENERIC) && defined(CRC_CLMUL) \
 | 
						|
		&& defined(HAVE_FUNC_ATTRIBUTE_IFUNC)
 | 
						|
extern LZMA_API(uint64_t)
 | 
						|
lzma_crc64(const uint8_t *buf, size_t size, uint64_t crc)
 | 
						|
		__attribute__((__ifunc__("crc64_resolve")));
 | 
						|
#else
 | 
						|
extern LZMA_API(uint64_t)
 | 
						|
lzma_crc64(const uint8_t *buf, size_t size, uint64_t crc)
 | 
						|
{
 | 
						|
#if defined(CRC_GENERIC) && defined(CRC_CLMUL)
 | 
						|
	// If CLMUL is available, it is the best for non-tiny inputs,
 | 
						|
	// being over twice as fast as the generic slice-by-four version.
 | 
						|
	// However, for size <= 16 it's different. In the extreme case
 | 
						|
	// of size == 1 the generic version can be five times faster.
 | 
						|
	// At size >= 8 the CLMUL starts to become reasonable. It
 | 
						|
	// varies depending on the alignment of buf too.
 | 
						|
	//
 | 
						|
	// The above doesn't include the overhead of mythread_once().
 | 
						|
	// At least on x86-64 GNU/Linux, pthread_once() is very fast but
 | 
						|
	// it still makes lzma_crc64(buf, 1, crc) 50-100 % slower. When
 | 
						|
	// size reaches 12-16 bytes the overhead becomes negligible.
 | 
						|
	//
 | 
						|
	// So using the generic version for size <= 16 may give better
 | 
						|
	// performance with tiny inputs but if such inputs happen rarely
 | 
						|
	// it's not so obvious because then the lookup table of the
 | 
						|
	// generic version may not be in the processor cache.
 | 
						|
#ifdef CRC_USE_GENERIC_FOR_SMALL_INPUTS
 | 
						|
	if (size <= 16)
 | 
						|
		return crc64_generic(buf, size, crc);
 | 
						|
#endif
 | 
						|
 | 
						|
/*
 | 
						|
#ifndef HAVE_FUNC_ATTRIBUTE_CONSTRUCTOR
 | 
						|
	// See crc64_dispatch(). This would be the alternative which uses
 | 
						|
	// locking and doesn't use crc64_dispatch(). Note that on Windows
 | 
						|
	// this method needs Vista threads.
 | 
						|
	mythread_once(crc64_set_func);
 | 
						|
#endif
 | 
						|
*/
 | 
						|
 | 
						|
	return crc64_func(buf, size, crc);
 | 
						|
 | 
						|
#elif defined(CRC_CLMUL)
 | 
						|
	// If CLMUL is used unconditionally without runtime CPU detection
 | 
						|
	// then omitting the generic version and its 8 KiB lookup table
 | 
						|
	// makes the library smaller.
 | 
						|
	//
 | 
						|
	// FIXME: Lookup table isn't currently omitted on 32-bit x86,
 | 
						|
	// see crc64_table.c.
 | 
						|
	return crc64_clmul(buf, size, crc);
 | 
						|
 | 
						|
#else
 | 
						|
	return crc64_generic(buf, size, crc);
 | 
						|
#endif
 | 
						|
}
 | 
						|
#endif
 |