mirror of
https://git.tukaani.org/xz.git
synced 2025-02-10 10:45:46 +00:00
With this it is possible to encode LZMA1 data without EOPM so that the encoder will encode as much input as it can without exceeding the specified output size limit. The resulting LZMA1 stream will be a normal LZMA1 stream without EOPM. The actual uncompressed size will be available to the caller via the uncomp_size pointer. One missing thing is that the LZMA layer doesn't inform the LZ layer when the encoding is finished and thus the LZ may read more input when it won't be used. However, this doesn't matter if encoding is done with a single call (which is the planned use case for now). For proper multi-call encoding this should be improved. This commit only adds the functionality for internal use. Nothing uses it yet.
633 lines
17 KiB
C
633 lines
17 KiB
C
///////////////////////////////////////////////////////////////////////////////
|
|
//
|
|
/// \file lz_encoder.c
|
|
/// \brief LZ in window
|
|
///
|
|
// Authors: Igor Pavlov
|
|
// Lasse Collin
|
|
//
|
|
// This file has been put into the public domain.
|
|
// You can do whatever you want with this file.
|
|
//
|
|
///////////////////////////////////////////////////////////////////////////////
|
|
|
|
#include "lz_encoder.h"
|
|
#include "lz_encoder_hash.h"
|
|
|
|
// See lz_encoder_hash.h. This is a bit hackish but avoids making
|
|
// endianness a conditional in makefiles.
|
|
#if defined(WORDS_BIGENDIAN) && !defined(HAVE_SMALL)
|
|
# include "lz_encoder_hash_table.h"
|
|
#endif
|
|
|
|
#include "memcmplen.h"
|
|
|
|
|
|
typedef struct {
|
|
/// LZ-based encoder e.g. LZMA
|
|
lzma_lz_encoder lz;
|
|
|
|
/// History buffer and match finder
|
|
lzma_mf mf;
|
|
|
|
/// Next coder in the chain
|
|
lzma_next_coder next;
|
|
} lzma_coder;
|
|
|
|
|
|
/// \brief Moves the data in the input window to free space for new data
|
|
///
|
|
/// mf->buffer is a sliding input window, which keeps mf->keep_size_before
|
|
/// bytes of input history available all the time. Now and then we need to
|
|
/// "slide" the buffer to make space for the new data to the end of the
|
|
/// buffer. At the same time, data older than keep_size_before is dropped.
|
|
///
|
|
static void
|
|
move_window(lzma_mf *mf)
|
|
{
|
|
// Align the move to a multiple of 16 bytes. Some LZ-based encoders
|
|
// like LZMA use the lowest bits of mf->read_pos to know the
|
|
// alignment of the uncompressed data. We also get better speed
|
|
// for memmove() with aligned buffers.
|
|
assert(mf->read_pos > mf->keep_size_before);
|
|
const uint32_t move_offset
|
|
= (mf->read_pos - mf->keep_size_before) & ~UINT32_C(15);
|
|
|
|
assert(mf->write_pos > move_offset);
|
|
const size_t move_size = mf->write_pos - move_offset;
|
|
|
|
assert(move_offset + move_size <= mf->size);
|
|
|
|
memmove(mf->buffer, mf->buffer + move_offset, move_size);
|
|
|
|
mf->offset += move_offset;
|
|
mf->read_pos -= move_offset;
|
|
mf->read_limit -= move_offset;
|
|
mf->write_pos -= move_offset;
|
|
|
|
return;
|
|
}
|
|
|
|
|
|
/// \brief Tries to fill the input window (mf->buffer)
|
|
///
|
|
/// If we are the last encoder in the chain, our input data is in in[].
|
|
/// Otherwise we call the next filter in the chain to process in[] and
|
|
/// write its output to mf->buffer.
|
|
///
|
|
/// This function must not be called once it has returned LZMA_STREAM_END.
|
|
///
|
|
static lzma_ret
|
|
fill_window(lzma_coder *coder, const lzma_allocator *allocator,
|
|
const uint8_t *in, size_t *in_pos, size_t in_size,
|
|
lzma_action action)
|
|
{
|
|
assert(coder->mf.read_pos <= coder->mf.write_pos);
|
|
|
|
// Move the sliding window if needed.
|
|
if (coder->mf.read_pos >= coder->mf.size - coder->mf.keep_size_after)
|
|
move_window(&coder->mf);
|
|
|
|
// Maybe this is ugly, but lzma_mf uses uint32_t for most things
|
|
// (which I find cleanest), but we need size_t here when filling
|
|
// the history window.
|
|
size_t write_pos = coder->mf.write_pos;
|
|
lzma_ret ret;
|
|
if (coder->next.code == NULL) {
|
|
// Not using a filter, simply memcpy() as much as possible.
|
|
lzma_bufcpy(in, in_pos, in_size, coder->mf.buffer,
|
|
&write_pos, coder->mf.size);
|
|
|
|
ret = action != LZMA_RUN && *in_pos == in_size
|
|
? LZMA_STREAM_END : LZMA_OK;
|
|
|
|
} else {
|
|
ret = coder->next.code(coder->next.coder, allocator,
|
|
in, in_pos, in_size,
|
|
coder->mf.buffer, &write_pos,
|
|
coder->mf.size, action);
|
|
}
|
|
|
|
coder->mf.write_pos = write_pos;
|
|
|
|
// Silence Valgrind. lzma_memcmplen() can read extra bytes
|
|
// and Valgrind will give warnings if those bytes are uninitialized
|
|
// because Valgrind cannot see that the values of the uninitialized
|
|
// bytes are eventually ignored.
|
|
memzero(coder->mf.buffer + write_pos, LZMA_MEMCMPLEN_EXTRA);
|
|
|
|
// If end of stream has been reached or flushing completed, we allow
|
|
// the encoder to process all the input (that is, read_pos is allowed
|
|
// to reach write_pos). Otherwise we keep keep_size_after bytes
|
|
// available as prebuffer.
|
|
if (ret == LZMA_STREAM_END) {
|
|
assert(*in_pos == in_size);
|
|
ret = LZMA_OK;
|
|
coder->mf.action = action;
|
|
coder->mf.read_limit = coder->mf.write_pos;
|
|
|
|
} else if (coder->mf.write_pos > coder->mf.keep_size_after) {
|
|
// This needs to be done conditionally, because if we got
|
|
// only little new input, there may be too little input
|
|
// to do any encoding yet.
|
|
coder->mf.read_limit = coder->mf.write_pos
|
|
- coder->mf.keep_size_after;
|
|
}
|
|
|
|
// Restart the match finder after finished LZMA_SYNC_FLUSH.
|
|
if (coder->mf.pending > 0
|
|
&& coder->mf.read_pos < coder->mf.read_limit) {
|
|
// Match finder may update coder->pending and expects it to
|
|
// start from zero, so use a temporary variable.
|
|
const uint32_t pending = coder->mf.pending;
|
|
coder->mf.pending = 0;
|
|
|
|
// Rewind read_pos so that the match finder can hash
|
|
// the pending bytes.
|
|
assert(coder->mf.read_pos >= pending);
|
|
coder->mf.read_pos -= pending;
|
|
|
|
// Call the skip function directly instead of using
|
|
// mf_skip(), since we don't want to touch mf->read_ahead.
|
|
coder->mf.skip(&coder->mf, pending);
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
|
|
static lzma_ret
|
|
lz_encode(void *coder_ptr, const lzma_allocator *allocator,
|
|
const uint8_t *restrict in, size_t *restrict in_pos,
|
|
size_t in_size,
|
|
uint8_t *restrict out, size_t *restrict out_pos,
|
|
size_t out_size, lzma_action action)
|
|
{
|
|
lzma_coder *coder = coder_ptr;
|
|
|
|
while (*out_pos < out_size
|
|
&& (*in_pos < in_size || action != LZMA_RUN)) {
|
|
// Read more data to coder->mf.buffer if needed.
|
|
if (coder->mf.action == LZMA_RUN && coder->mf.read_pos
|
|
>= coder->mf.read_limit)
|
|
return_if_error(fill_window(coder, allocator,
|
|
in, in_pos, in_size, action));
|
|
|
|
// Encode
|
|
const lzma_ret ret = coder->lz.code(coder->lz.coder,
|
|
&coder->mf, out, out_pos, out_size);
|
|
if (ret != LZMA_OK) {
|
|
// Setting this to LZMA_RUN for cases when we are
|
|
// flushing. It doesn't matter when finishing or if
|
|
// an error occurred.
|
|
coder->mf.action = LZMA_RUN;
|
|
return ret;
|
|
}
|
|
}
|
|
|
|
return LZMA_OK;
|
|
}
|
|
|
|
|
|
static bool
|
|
lz_encoder_prepare(lzma_mf *mf, const lzma_allocator *allocator,
|
|
const lzma_lz_options *lz_options)
|
|
{
|
|
// For now, the dictionary size is limited to 1.5 GiB. This may grow
|
|
// in the future if needed, but it needs a little more work than just
|
|
// changing this check.
|
|
if (lz_options->dict_size < LZMA_DICT_SIZE_MIN
|
|
|| lz_options->dict_size
|
|
> (UINT32_C(1) << 30) + (UINT32_C(1) << 29)
|
|
|| lz_options->nice_len > lz_options->match_len_max)
|
|
return true;
|
|
|
|
mf->keep_size_before = lz_options->before_size + lz_options->dict_size;
|
|
|
|
mf->keep_size_after = lz_options->after_size
|
|
+ lz_options->match_len_max;
|
|
|
|
// To avoid constant memmove()s, allocate some extra space. Since
|
|
// memmove()s become more expensive when the size of the buffer
|
|
// increases, we reserve more space when a large dictionary is
|
|
// used to make the memmove() calls rarer.
|
|
//
|
|
// This works with dictionaries up to about 3 GiB. If bigger
|
|
// dictionary is wanted, some extra work is needed:
|
|
// - Several variables in lzma_mf have to be changed from uint32_t
|
|
// to size_t.
|
|
// - Memory usage calculation needs something too, e.g. use uint64_t
|
|
// for mf->size.
|
|
uint32_t reserve = lz_options->dict_size / 2;
|
|
if (reserve > (UINT32_C(1) << 30))
|
|
reserve /= 2;
|
|
|
|
reserve += (lz_options->before_size + lz_options->match_len_max
|
|
+ lz_options->after_size) / 2 + (UINT32_C(1) << 19);
|
|
|
|
const uint32_t old_size = mf->size;
|
|
mf->size = mf->keep_size_before + reserve + mf->keep_size_after;
|
|
|
|
// Deallocate the old history buffer if it exists but has different
|
|
// size than what is needed now.
|
|
if (mf->buffer != NULL && old_size != mf->size) {
|
|
lzma_free(mf->buffer, allocator);
|
|
mf->buffer = NULL;
|
|
}
|
|
|
|
// Match finder options
|
|
mf->match_len_max = lz_options->match_len_max;
|
|
mf->nice_len = lz_options->nice_len;
|
|
|
|
// cyclic_size has to stay smaller than 2 Gi. Note that this doesn't
|
|
// mean limiting dictionary size to less than 2 GiB. With a match
|
|
// finder that uses multibyte resolution (hashes start at e.g. every
|
|
// fourth byte), cyclic_size would stay below 2 Gi even when
|
|
// dictionary size is greater than 2 GiB.
|
|
//
|
|
// It would be possible to allow cyclic_size >= 2 Gi, but then we
|
|
// would need to be careful to use 64-bit types in various places
|
|
// (size_t could do since we would need bigger than 32-bit address
|
|
// space anyway). It would also require either zeroing a multigigabyte
|
|
// buffer at initialization (waste of time and RAM) or allow
|
|
// normalization in lz_encoder_mf.c to access uninitialized
|
|
// memory to keep the code simpler. The current way is simple and
|
|
// still allows pretty big dictionaries, so I don't expect these
|
|
// limits to change.
|
|
mf->cyclic_size = lz_options->dict_size + 1;
|
|
|
|
// Validate the match finder ID and setup the function pointers.
|
|
switch (lz_options->match_finder) {
|
|
#ifdef HAVE_MF_HC3
|
|
case LZMA_MF_HC3:
|
|
mf->find = &lzma_mf_hc3_find;
|
|
mf->skip = &lzma_mf_hc3_skip;
|
|
break;
|
|
#endif
|
|
#ifdef HAVE_MF_HC4
|
|
case LZMA_MF_HC4:
|
|
mf->find = &lzma_mf_hc4_find;
|
|
mf->skip = &lzma_mf_hc4_skip;
|
|
break;
|
|
#endif
|
|
#ifdef HAVE_MF_BT2
|
|
case LZMA_MF_BT2:
|
|
mf->find = &lzma_mf_bt2_find;
|
|
mf->skip = &lzma_mf_bt2_skip;
|
|
break;
|
|
#endif
|
|
#ifdef HAVE_MF_BT3
|
|
case LZMA_MF_BT3:
|
|
mf->find = &lzma_mf_bt3_find;
|
|
mf->skip = &lzma_mf_bt3_skip;
|
|
break;
|
|
#endif
|
|
#ifdef HAVE_MF_BT4
|
|
case LZMA_MF_BT4:
|
|
mf->find = &lzma_mf_bt4_find;
|
|
mf->skip = &lzma_mf_bt4_skip;
|
|
break;
|
|
#endif
|
|
|
|
default:
|
|
return true;
|
|
}
|
|
|
|
// Calculate the sizes of mf->hash and mf->son and check that
|
|
// nice_len is big enough for the selected match finder.
|
|
const uint32_t hash_bytes = lz_options->match_finder & 0x0F;
|
|
if (hash_bytes > mf->nice_len)
|
|
return true;
|
|
|
|
const bool is_bt = (lz_options->match_finder & 0x10) != 0;
|
|
uint32_t hs;
|
|
|
|
if (hash_bytes == 2) {
|
|
hs = 0xFFFF;
|
|
} else {
|
|
// Round dictionary size up to the next 2^n - 1 so it can
|
|
// be used as a hash mask.
|
|
hs = lz_options->dict_size - 1;
|
|
hs |= hs >> 1;
|
|
hs |= hs >> 2;
|
|
hs |= hs >> 4;
|
|
hs |= hs >> 8;
|
|
hs >>= 1;
|
|
hs |= 0xFFFF;
|
|
|
|
if (hs > (UINT32_C(1) << 24)) {
|
|
if (hash_bytes == 3)
|
|
hs = (UINT32_C(1) << 24) - 1;
|
|
else
|
|
hs >>= 1;
|
|
}
|
|
}
|
|
|
|
mf->hash_mask = hs;
|
|
|
|
++hs;
|
|
if (hash_bytes > 2)
|
|
hs += HASH_2_SIZE;
|
|
if (hash_bytes > 3)
|
|
hs += HASH_3_SIZE;
|
|
/*
|
|
No match finder uses this at the moment.
|
|
if (mf->hash_bytes > 4)
|
|
hs += HASH_4_SIZE;
|
|
*/
|
|
|
|
const uint32_t old_hash_count = mf->hash_count;
|
|
const uint32_t old_sons_count = mf->sons_count;
|
|
mf->hash_count = hs;
|
|
mf->sons_count = mf->cyclic_size;
|
|
if (is_bt)
|
|
mf->sons_count *= 2;
|
|
|
|
// Deallocate the old hash array if it exists and has different size
|
|
// than what is needed now.
|
|
if (old_hash_count != mf->hash_count
|
|
|| old_sons_count != mf->sons_count) {
|
|
lzma_free(mf->hash, allocator);
|
|
mf->hash = NULL;
|
|
|
|
lzma_free(mf->son, allocator);
|
|
mf->son = NULL;
|
|
}
|
|
|
|
// Maximum number of match finder cycles
|
|
mf->depth = lz_options->depth;
|
|
if (mf->depth == 0) {
|
|
if (is_bt)
|
|
mf->depth = 16 + mf->nice_len / 2;
|
|
else
|
|
mf->depth = 4 + mf->nice_len / 4;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
|
|
static bool
|
|
lz_encoder_init(lzma_mf *mf, const lzma_allocator *allocator,
|
|
const lzma_lz_options *lz_options)
|
|
{
|
|
// Allocate the history buffer.
|
|
if (mf->buffer == NULL) {
|
|
// lzma_memcmplen() is used for the dictionary buffer
|
|
// so we need to allocate a few extra bytes to prevent
|
|
// it from reading past the end of the buffer.
|
|
mf->buffer = lzma_alloc(mf->size + LZMA_MEMCMPLEN_EXTRA,
|
|
allocator);
|
|
if (mf->buffer == NULL)
|
|
return true;
|
|
|
|
// Keep Valgrind happy with lzma_memcmplen() and initialize
|
|
// the extra bytes whose value may get read but which will
|
|
// effectively get ignored.
|
|
memzero(mf->buffer + mf->size, LZMA_MEMCMPLEN_EXTRA);
|
|
}
|
|
|
|
// Use cyclic_size as initial mf->offset. This allows
|
|
// avoiding a few branches in the match finders. The downside is
|
|
// that match finder needs to be normalized more often, which may
|
|
// hurt performance with huge dictionaries.
|
|
mf->offset = mf->cyclic_size;
|
|
mf->read_pos = 0;
|
|
mf->read_ahead = 0;
|
|
mf->read_limit = 0;
|
|
mf->write_pos = 0;
|
|
mf->pending = 0;
|
|
|
|
#if UINT32_MAX >= SIZE_MAX / 4
|
|
// Check for integer overflow. (Huge dictionaries are not
|
|
// possible on 32-bit CPU.)
|
|
if (mf->hash_count > SIZE_MAX / sizeof(uint32_t)
|
|
|| mf->sons_count > SIZE_MAX / sizeof(uint32_t))
|
|
return true;
|
|
#endif
|
|
|
|
// Allocate and initialize the hash table. Since EMPTY_HASH_VALUE
|
|
// is zero, we can use lzma_alloc_zero() or memzero() for mf->hash.
|
|
//
|
|
// We don't need to initialize mf->son, but not doing that may
|
|
// make Valgrind complain in normalization (see normalize() in
|
|
// lz_encoder_mf.c). Skipping the initialization is *very* good
|
|
// when big dictionary is used but only small amount of data gets
|
|
// actually compressed: most of the mf->son won't get actually
|
|
// allocated by the kernel, so we avoid wasting RAM and improve
|
|
// initialization speed a lot.
|
|
if (mf->hash == NULL) {
|
|
mf->hash = lzma_alloc_zero(mf->hash_count * sizeof(uint32_t),
|
|
allocator);
|
|
mf->son = lzma_alloc(mf->sons_count * sizeof(uint32_t),
|
|
allocator);
|
|
|
|
if (mf->hash == NULL || mf->son == NULL) {
|
|
lzma_free(mf->hash, allocator);
|
|
mf->hash = NULL;
|
|
|
|
lzma_free(mf->son, allocator);
|
|
mf->son = NULL;
|
|
|
|
return true;
|
|
}
|
|
} else {
|
|
/*
|
|
for (uint32_t i = 0; i < mf->hash_count; ++i)
|
|
mf->hash[i] = EMPTY_HASH_VALUE;
|
|
*/
|
|
memzero(mf->hash, mf->hash_count * sizeof(uint32_t));
|
|
}
|
|
|
|
mf->cyclic_pos = 0;
|
|
|
|
// Handle preset dictionary.
|
|
if (lz_options->preset_dict != NULL
|
|
&& lz_options->preset_dict_size > 0) {
|
|
// If the preset dictionary is bigger than the actual
|
|
// dictionary, use only the tail.
|
|
mf->write_pos = my_min(lz_options->preset_dict_size, mf->size);
|
|
memcpy(mf->buffer, lz_options->preset_dict
|
|
+ lz_options->preset_dict_size - mf->write_pos,
|
|
mf->write_pos);
|
|
mf->action = LZMA_SYNC_FLUSH;
|
|
mf->skip(mf, mf->write_pos);
|
|
}
|
|
|
|
mf->action = LZMA_RUN;
|
|
|
|
return false;
|
|
}
|
|
|
|
|
|
extern uint64_t
|
|
lzma_lz_encoder_memusage(const lzma_lz_options *lz_options)
|
|
{
|
|
// Old buffers must not exist when calling lz_encoder_prepare().
|
|
lzma_mf mf = {
|
|
.buffer = NULL,
|
|
.hash = NULL,
|
|
.son = NULL,
|
|
.hash_count = 0,
|
|
.sons_count = 0,
|
|
};
|
|
|
|
// Setup the size information into mf.
|
|
if (lz_encoder_prepare(&mf, NULL, lz_options))
|
|
return UINT64_MAX;
|
|
|
|
// Calculate the memory usage.
|
|
return ((uint64_t)(mf.hash_count) + mf.sons_count) * sizeof(uint32_t)
|
|
+ mf.size + sizeof(lzma_coder);
|
|
}
|
|
|
|
|
|
static void
|
|
lz_encoder_end(void *coder_ptr, const lzma_allocator *allocator)
|
|
{
|
|
lzma_coder *coder = coder_ptr;
|
|
|
|
lzma_next_end(&coder->next, allocator);
|
|
|
|
lzma_free(coder->mf.son, allocator);
|
|
lzma_free(coder->mf.hash, allocator);
|
|
lzma_free(coder->mf.buffer, allocator);
|
|
|
|
if (coder->lz.end != NULL)
|
|
coder->lz.end(coder->lz.coder, allocator);
|
|
else
|
|
lzma_free(coder->lz.coder, allocator);
|
|
|
|
lzma_free(coder, allocator);
|
|
return;
|
|
}
|
|
|
|
|
|
static lzma_ret
|
|
lz_encoder_update(void *coder_ptr, const lzma_allocator *allocator,
|
|
const lzma_filter *filters_null lzma_attribute((__unused__)),
|
|
const lzma_filter *reversed_filters)
|
|
{
|
|
lzma_coder *coder = coder_ptr;
|
|
|
|
if (coder->lz.options_update == NULL)
|
|
return LZMA_PROG_ERROR;
|
|
|
|
return_if_error(coder->lz.options_update(
|
|
coder->lz.coder, reversed_filters));
|
|
|
|
return lzma_next_filter_update(
|
|
&coder->next, allocator, reversed_filters + 1);
|
|
}
|
|
|
|
|
|
static lzma_ret
|
|
lz_encoder_set_out_limit(void *coder_ptr, uint64_t *uncomp_size,
|
|
uint64_t out_limit)
|
|
{
|
|
lzma_coder *coder = coder_ptr;
|
|
|
|
// This is supported only if there are no other filters chained.
|
|
if (coder->next.code == NULL && coder->lz.set_out_limit != NULL)
|
|
return coder->lz.set_out_limit(
|
|
coder->lz.coder, uncomp_size, out_limit);
|
|
|
|
return LZMA_OPTIONS_ERROR;
|
|
}
|
|
|
|
|
|
extern lzma_ret
|
|
lzma_lz_encoder_init(lzma_next_coder *next, const lzma_allocator *allocator,
|
|
const lzma_filter_info *filters,
|
|
lzma_ret (*lz_init)(lzma_lz_encoder *lz,
|
|
const lzma_allocator *allocator, const void *options,
|
|
lzma_lz_options *lz_options))
|
|
{
|
|
#ifdef HAVE_SMALL
|
|
// We need that the CRC32 table has been initialized.
|
|
lzma_crc32_init();
|
|
#endif
|
|
|
|
// Allocate and initialize the base data structure.
|
|
lzma_coder *coder = next->coder;
|
|
if (coder == NULL) {
|
|
coder = lzma_alloc(sizeof(lzma_coder), allocator);
|
|
if (coder == NULL)
|
|
return LZMA_MEM_ERROR;
|
|
|
|
next->coder = coder;
|
|
next->code = &lz_encode;
|
|
next->end = &lz_encoder_end;
|
|
next->update = &lz_encoder_update;
|
|
next->set_out_limit = &lz_encoder_set_out_limit;
|
|
|
|
coder->lz.coder = NULL;
|
|
coder->lz.code = NULL;
|
|
coder->lz.end = NULL;
|
|
|
|
// mf.size is initialized to silence Valgrind
|
|
// when used on optimized binaries (GCC may reorder
|
|
// code in a way that Valgrind gets unhappy).
|
|
coder->mf.buffer = NULL;
|
|
coder->mf.size = 0;
|
|
coder->mf.hash = NULL;
|
|
coder->mf.son = NULL;
|
|
coder->mf.hash_count = 0;
|
|
coder->mf.sons_count = 0;
|
|
|
|
coder->next = LZMA_NEXT_CODER_INIT;
|
|
}
|
|
|
|
// Initialize the LZ-based encoder.
|
|
lzma_lz_options lz_options;
|
|
return_if_error(lz_init(&coder->lz, allocator,
|
|
filters[0].options, &lz_options));
|
|
|
|
// Setup the size information into coder->mf and deallocate
|
|
// old buffers if they have wrong size.
|
|
if (lz_encoder_prepare(&coder->mf, allocator, &lz_options))
|
|
return LZMA_OPTIONS_ERROR;
|
|
|
|
// Allocate new buffers if needed, and do the rest of
|
|
// the initialization.
|
|
if (lz_encoder_init(&coder->mf, allocator, &lz_options))
|
|
return LZMA_MEM_ERROR;
|
|
|
|
// Initialize the next filter in the chain, if any.
|
|
return lzma_next_filter_init(&coder->next, allocator, filters + 1);
|
|
}
|
|
|
|
|
|
extern LZMA_API(lzma_bool)
|
|
lzma_mf_is_supported(lzma_match_finder mf)
|
|
{
|
|
bool ret = false;
|
|
|
|
#ifdef HAVE_MF_HC3
|
|
if (mf == LZMA_MF_HC3)
|
|
ret = true;
|
|
#endif
|
|
|
|
#ifdef HAVE_MF_HC4
|
|
if (mf == LZMA_MF_HC4)
|
|
ret = true;
|
|
#endif
|
|
|
|
#ifdef HAVE_MF_BT2
|
|
if (mf == LZMA_MF_BT2)
|
|
ret = true;
|
|
#endif
|
|
|
|
#ifdef HAVE_MF_BT3
|
|
if (mf == LZMA_MF_BT3)
|
|
ret = true;
|
|
#endif
|
|
|
|
#ifdef HAVE_MF_BT4
|
|
if (mf == LZMA_MF_BT4)
|
|
ret = true;
|
|
#endif
|
|
|
|
return ret;
|
|
}
|