mirror of https://git.tukaani.org/xz.git
186 lines
4.9 KiB
C
186 lines
4.9 KiB
C
///////////////////////////////////////////////////////////////////////////////
|
|
//
|
|
/// \file range_decoder.h
|
|
/// \brief Range Decoder
|
|
///
|
|
// Authors: Igor Pavlov
|
|
// Lasse Collin
|
|
//
|
|
// This file has been put into the public domain.
|
|
// You can do whatever you want with this file.
|
|
//
|
|
///////////////////////////////////////////////////////////////////////////////
|
|
|
|
#ifndef LZMA_RANGE_DECODER_H
|
|
#define LZMA_RANGE_DECODER_H
|
|
|
|
#include "range_common.h"
|
|
|
|
|
|
typedef struct {
|
|
uint32_t range;
|
|
uint32_t code;
|
|
uint32_t init_bytes_left;
|
|
} lzma_range_decoder;
|
|
|
|
|
|
/// Reads the first five bytes to initialize the range decoder.
|
|
static inline lzma_ret
|
|
rc_read_init(lzma_range_decoder *rc, const uint8_t *restrict in,
|
|
size_t *restrict in_pos, size_t in_size)
|
|
{
|
|
while (rc->init_bytes_left > 0) {
|
|
if (*in_pos == in_size)
|
|
return LZMA_OK;
|
|
|
|
// The first byte is always 0x00. It could have been omitted
|
|
// in LZMA2 but it wasn't, so one byte is wasted in every
|
|
// LZMA2 chunk.
|
|
if (rc->init_bytes_left == 5 && in[*in_pos] != 0x00)
|
|
return LZMA_DATA_ERROR;
|
|
|
|
rc->code = (rc->code << 8) | in[*in_pos];
|
|
++*in_pos;
|
|
--rc->init_bytes_left;
|
|
}
|
|
|
|
return LZMA_STREAM_END;
|
|
}
|
|
|
|
|
|
/// Makes local copies of range decoder and *in_pos variables. Doing this
|
|
/// improves speed significantly. The range decoder macros expect also
|
|
/// variables `in' and `in_size' to be defined.
|
|
#define rc_to_local(range_decoder, in_pos) \
|
|
lzma_range_decoder rc = range_decoder; \
|
|
size_t rc_in_pos = (in_pos); \
|
|
uint32_t rc_bound
|
|
|
|
|
|
/// Stores the local copes back to the range decoder structure.
|
|
#define rc_from_local(range_decoder, in_pos) \
|
|
do { \
|
|
range_decoder = rc; \
|
|
in_pos = rc_in_pos; \
|
|
} while (0)
|
|
|
|
|
|
/// Resets the range decoder structure.
|
|
#define rc_reset(range_decoder) \
|
|
do { \
|
|
(range_decoder).range = UINT32_MAX; \
|
|
(range_decoder).code = 0; \
|
|
(range_decoder).init_bytes_left = 5; \
|
|
} while (0)
|
|
|
|
|
|
/// When decoding has been properly finished, rc.code is always zero unless
|
|
/// the input stream is corrupt. So checking this can catch some corrupt
|
|
/// files especially if they don't have any other integrity check.
|
|
#define rc_is_finished(range_decoder) \
|
|
((range_decoder).code == 0)
|
|
|
|
|
|
/// Read the next input byte if needed. If more input is needed but there is
|
|
/// no more input available, "goto out" is used to jump out of the main
|
|
/// decoder loop.
|
|
#define rc_normalize(seq) \
|
|
do { \
|
|
if (rc.range < RC_TOP_VALUE) { \
|
|
if (unlikely(rc_in_pos == in_size)) { \
|
|
coder->sequence = seq; \
|
|
goto out; \
|
|
} \
|
|
rc.range <<= RC_SHIFT_BITS; \
|
|
rc.code = (rc.code << RC_SHIFT_BITS) | in[rc_in_pos++]; \
|
|
} \
|
|
} while (0)
|
|
|
|
|
|
/// Start decoding a bit. This must be used together with rc_update_0()
|
|
/// and rc_update_1():
|
|
///
|
|
/// rc_if_0(prob, seq) {
|
|
/// rc_update_0(prob);
|
|
/// // Do something
|
|
/// } else {
|
|
/// rc_update_1(prob);
|
|
/// // Do something else
|
|
/// }
|
|
///
|
|
#define rc_if_0(prob, seq) \
|
|
rc_normalize(seq); \
|
|
rc_bound = (rc.range >> RC_BIT_MODEL_TOTAL_BITS) * (prob); \
|
|
if (rc.code < rc_bound)
|
|
|
|
|
|
/// Update the range decoder state and the used probability variable to
|
|
/// match a decoded bit of 0.
|
|
#define rc_update_0(prob) \
|
|
do { \
|
|
rc.range = rc_bound; \
|
|
prob += (RC_BIT_MODEL_TOTAL - (prob)) >> RC_MOVE_BITS; \
|
|
} while (0)
|
|
|
|
|
|
/// Update the range decoder state and the used probability variable to
|
|
/// match a decoded bit of 1.
|
|
#define rc_update_1(prob) \
|
|
do { \
|
|
rc.range -= rc_bound; \
|
|
rc.code -= rc_bound; \
|
|
prob -= (prob) >> RC_MOVE_BITS; \
|
|
} while (0)
|
|
|
|
|
|
/// Decodes one bit and runs action0 or action1 depending on the decoded bit.
|
|
/// This macro is used as the last step in bittree reverse decoders since
|
|
/// those don't use "symbol" for anything else than indexing the probability
|
|
/// arrays.
|
|
#define rc_bit_last(prob, action0, action1, seq) \
|
|
do { \
|
|
rc_if_0(prob, seq) { \
|
|
rc_update_0(prob); \
|
|
action0; \
|
|
} else { \
|
|
rc_update_1(prob); \
|
|
action1; \
|
|
} \
|
|
} while (0)
|
|
|
|
|
|
/// Decodes one bit, updates "symbol", and runs action0 or action1 depending
|
|
/// on the decoded bit.
|
|
#define rc_bit(prob, action0, action1, seq) \
|
|
rc_bit_last(prob, \
|
|
symbol <<= 1; action0, \
|
|
symbol = (symbol << 1) + 1; action1, \
|
|
seq);
|
|
|
|
|
|
/// Like rc_bit() but add "case seq:" as a prefix. This makes the unrolled
|
|
/// loops more readable because the code isn't littered with "case"
|
|
/// statements. On the other hand this also makes it less readable, since
|
|
/// spotting the places where the decoder loop may be restarted is less
|
|
/// obvious.
|
|
#define rc_bit_case(prob, action0, action1, seq) \
|
|
case seq: rc_bit(prob, action0, action1, seq)
|
|
|
|
|
|
/// Decode a bit without using a probability.
|
|
#define rc_direct(dest, seq) \
|
|
do { \
|
|
rc_normalize(seq); \
|
|
rc.range >>= 1; \
|
|
rc.code -= rc.range; \
|
|
rc_bound = UINT32_C(0) - (rc.code >> 31); \
|
|
rc.code += rc.range & rc_bound; \
|
|
dest = (dest << 1) + (rc_bound + 1); \
|
|
} while (0)
|
|
|
|
|
|
// NOTE: No macros are provided for bittree decoding. It seems to be simpler
|
|
// to just write them open in the code.
|
|
|
|
#endif
|