xz/src/liblzma/lzma/lzma_encoder_getoptimum.c

890 lines
24 KiB
C

///////////////////////////////////////////////////////////////////////////////
//
/// \file lzma_encoder_getoptimum.c
//
// Copyright (C) 1999-2006 Igor Pavlov
// Copyright (C) 2007 Lasse Collin
//
// This library is free software; you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public
// License as published by the Free Software Foundation; either
// version 2.1 of the License, or (at your option) any later version.
//
// This library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
// Lesser General Public License for more details.
//
///////////////////////////////////////////////////////////////////////////////
// NOTE: If you want to keep the line length in 80 characters, set
// tab width to 4 or less in your editor when editing this file.
// "Would you love the monster code?
// Could you understand beauty of the beast?"
// --Adapted from Lordi's "Would you love a monster man".
#include "lzma_encoder_private.h"
#define length_get_price(length_encoder, symbol, pos_state) \
(length_encoder).prices[pos_state][symbol]
#define get_rep_len_1_price(state, pos_state) \
bit_get_price_0(coder->is_rep0[state]) \
+ bit_get_price_0(coder->is_rep0_long[state][pos_state])
// Adds to price_target.
#define get_pure_rep_price(price_target, rep_index, state, pos_state) \
do { \
if ((rep_index) == 0) { \
price_target += bit_get_price_0(coder->is_rep0[state]); \
price_target += bit_get_price_1( \
coder->is_rep0_long[state][pos_state]); \
} else { \
price_target += bit_get_price_1(coder->is_rep0[state]); \
if ((rep_index) == 1) { \
price_target += bit_get_price_0(coder->is_rep1[state]); \
} else { \
price_target += bit_get_price_1(coder->is_rep1[state]); \
price_target += bit_get_price( \
coder->is_rep2[state], (rep_index) - 2); \
} \
} \
} while (0)
// Adds to price_target.
#define get_rep_price(price_target, rep_index, len, state, pos_state) \
do { \
get_pure_rep_price(price_target, rep_index, state, pos_state); \
price_target += length_get_price(coder->rep_match_len_encoder, \
(len) - MATCH_MIN_LEN, pos_state); \
} while (0)
// Adds to price_target.
#define get_pos_len_price(price_target, pos, len, pos_state) \
do { \
const uint32_t len_to_pos_state_tmp = get_len_to_pos_state(len); \
if ((pos) < FULL_DISTANCES) { \
price_target += distances_prices[len_to_pos_state_tmp][pos]; \
} else { \
price_target \
+= pos_slot_prices[len_to_pos_state_tmp][get_pos_slot_2(pos)] \
+ align_prices[(pos) & ALIGN_MASK]; \
} \
price_target += length_get_price( \
coder->len_encoder, (len) - MATCH_MIN_LEN, pos_state); \
} while (0)
// Three macros to manipulate lzma_optimal structures:
#define make_as_char(opt) \
do { \
(opt).back_prev = UINT32_MAX; \
(opt).prev_1_is_char = false; \
} while (0)
#define make_as_short_rep(opt) \
do { \
(opt).back_prev = 0; \
(opt).prev_1_is_char = false; \
} while (0)
#define is_short_rep(opt) \
((opt).back_prev == 0)
static void
fill_distances_prices(lzma_coder *coder)
{
uint32_t temp_prices[FULL_DISTANCES];
for (uint32_t i = START_POS_MODEL_INDEX; i < FULL_DISTANCES; ++i) {
const uint32_t pos_slot = get_pos_slot(i);
const uint32_t footer_bits = ((pos_slot >> 1) - 1);
const uint32_t base = (2 | (pos_slot & 1)) << footer_bits;
temp_prices[i] = bittree_reverse_get_price(
coder->pos_encoders + base - pos_slot - 1,
footer_bits, i - base);
}
const uint32_t dist_table_size = coder->dist_table_size;
for (uint32_t len_to_pos_state = 0;
len_to_pos_state < LEN_TO_POS_STATES;
++len_to_pos_state) {
const probability *encoder = coder->pos_slot_encoder[len_to_pos_state];
uint32_t *pos_slot_prices = coder->pos_slot_prices[len_to_pos_state];
for (uint32_t pos_slot = 0;
pos_slot < dist_table_size;
++pos_slot) {
pos_slot_prices[pos_slot] = bittree_get_price(encoder,
POS_SLOT_BITS, pos_slot);
}
for (uint32_t pos_slot = END_POS_MODEL_INDEX;
pos_slot < dist_table_size;
++pos_slot)
pos_slot_prices[pos_slot] += (((pos_slot >> 1) - 1)
- ALIGN_BITS) << BIT_PRICE_SHIFT_BITS;
uint32_t *distances_prices
= coder->distances_prices[len_to_pos_state];
uint32_t i;
for (i = 0; i < START_POS_MODEL_INDEX; ++i)
distances_prices[i] = pos_slot_prices[i];
for (; i < FULL_DISTANCES; ++i)
distances_prices[i] = pos_slot_prices[get_pos_slot(i)]
+ temp_prices[i];
}
coder->match_price_count = 0;
return;
}
static void
fill_align_prices(lzma_coder *coder)
{
for (uint32_t i = 0; i < ALIGN_TABLE_SIZE; ++i)
coder->align_prices[i] = bittree_reverse_get_price(
coder->pos_align_encoder, ALIGN_BITS, i);
coder->align_price_count = 0;
return;
}
// The first argument is a pointer returned by literal_get_subcoder().
static uint32_t
literal_get_price(const probability *encoders, const bool match_mode,
const uint8_t match_byte, const uint8_t symbol)
{
uint32_t price = 0;
uint32_t context = 1;
int i = 8;
if (match_mode) {
do {
--i;
const uint32_t match_bit = (match_byte >> i) & 1;
const uint32_t bit = (symbol >> i) & 1;
const uint32_t subcoder_index
= 0x100 + (match_bit << 8) + context;
price += bit_get_price(encoders[subcoder_index], bit);
context = (context << 1) | bit;
if (match_bit != bit)
break;
} while (i != 0);
}
while (i != 0) {
--i;
const uint32_t bit = (symbol >> i) & 1;
price += bit_get_price(encoders[context], bit);
context = (context << 1) | bit;
}
return price;
}
static void
backward(lzma_coder *restrict coder, uint32_t *restrict len_res,
uint32_t *restrict back_res, uint32_t cur)
{
coder->optimum_end_index = cur;
uint32_t pos_mem = coder->optimum[cur].pos_prev;
uint32_t back_mem = coder->optimum[cur].back_prev;
do {
if (coder->optimum[cur].prev_1_is_char) {
make_as_char(coder->optimum[pos_mem]);
coder->optimum[pos_mem].pos_prev = pos_mem - 1;
if (coder->optimum[cur].prev_2) {
coder->optimum[pos_mem - 1].prev_1_is_char = false;
coder->optimum[pos_mem - 1].pos_prev
= coder->optimum[cur].pos_prev_2;
coder->optimum[pos_mem - 1].back_prev
= coder->optimum[cur].back_prev_2;
}
}
uint32_t pos_prev = pos_mem;
uint32_t back_cur = back_mem;
back_mem = coder->optimum[pos_prev].back_prev;
pos_mem = coder->optimum[pos_prev].pos_prev;
coder->optimum[pos_prev].back_prev = back_cur;
coder->optimum[pos_prev].pos_prev = cur;
cur = pos_prev;
} while (cur != 0);
coder->optimum_current_index = coder->optimum[0].pos_prev;
*len_res = coder->optimum[0].pos_prev;
*back_res = coder->optimum[0].back_prev;
return;
}
extern void
lzma_get_optimum(lzma_coder *restrict coder,
uint32_t *restrict back_res, uint32_t *restrict len_res)
{
// Update the price tables. In the C++ LZMA SDK 4.42 this was done in both
// initialization function and in the main loop. In liblzma they were
// moved into this single place.
if (coder->additional_offset == 0) {
if (coder->match_price_count >= (1 << 7))
fill_distances_prices(coder);
if (coder->align_price_count >= ALIGN_TABLE_SIZE)
fill_align_prices(coder);
}
if (coder->optimum_end_index != coder->optimum_current_index) {
*len_res = coder->optimum[coder->optimum_current_index].pos_prev
- coder->optimum_current_index;
*back_res = coder->optimum[coder->optimum_current_index].back_prev;
coder->optimum_current_index = coder->optimum[
coder->optimum_current_index].pos_prev;
return;
}
coder->optimum_current_index = 0;
coder->optimum_end_index = 0;
const uint32_t fast_bytes = coder->fast_bytes;
uint32_t *match_distances = coder->match_distances;
uint32_t len_main;
uint32_t num_distance_pairs;
if (!coder->longest_match_was_found) {
lzma_read_match_distances(coder, &len_main, &num_distance_pairs);
} else {
len_main = coder->longest_match_length;
num_distance_pairs = coder->num_distance_pairs;
coder->longest_match_was_found = false;
}
const uint8_t *buf = coder->lz.buffer + coder->lz.read_pos - 1;
uint32_t num_available_bytes
= coder->lz.write_pos - coder->lz.read_pos + 1;
if (num_available_bytes < 2) {
*back_res = UINT32_MAX;
*len_res = 1;
return;
}
if (num_available_bytes > MATCH_MAX_LEN)
num_available_bytes = MATCH_MAX_LEN;
uint32_t reps[REP_DISTANCES];
uint32_t rep_lens[REP_DISTANCES];
uint32_t rep_max_index = 0;
for (uint32_t i = 0; i < REP_DISTANCES; ++i) {
reps[i] = coder->rep_distances[i];
const uint32_t back_offset = reps[i] + 1;
if (buf[0] != *(buf - back_offset)
|| buf[1] != *(buf + 1 - back_offset)) {
rep_lens[i] = 0;
continue;
}
uint32_t len_test;
for (len_test = 2; len_test < num_available_bytes
&& buf[len_test] == *(buf + len_test - back_offset);
++len_test) ;
rep_lens[i] = len_test;
if (len_test > rep_lens[rep_max_index])
rep_max_index = i;
}
if (rep_lens[rep_max_index] >= fast_bytes) {
*back_res = rep_max_index;
*len_res = rep_lens[rep_max_index];
move_pos(*len_res - 1);
return;
}
if (len_main >= fast_bytes) {
*back_res = match_distances[num_distance_pairs] + REP_DISTANCES;
*len_res = len_main;
move_pos(len_main - 1);
return;
}
uint8_t current_byte = *buf;
uint8_t match_byte = *(buf - reps[0] - 1);
if (len_main < 2 && current_byte != match_byte
&& rep_lens[rep_max_index] < 2) {
*back_res = UINT32_MAX;
*len_res = 1;
return;
}
const uint32_t pos_mask = coder->pos_mask;
coder->optimum[0].state = coder->state;
uint32_t position = coder->now_pos;
uint32_t pos_state = (position & pos_mask);
coder->optimum[1].price = bit_get_price_0(
coder->is_match[coder->state][pos_state])
+ literal_get_price(
literal_get_subcoder(coder->literal_coder,
position, coder->previous_byte),
!is_char_state(coder->state), match_byte, current_byte);
make_as_char(coder->optimum[1]);
uint32_t match_price
= bit_get_price_1(coder->is_match[coder->state][pos_state]);
uint32_t rep_match_price
= match_price + bit_get_price_1(coder->is_rep[coder->state]);
if (match_byte == current_byte) {
const uint32_t short_rep_price = rep_match_price
+ get_rep_len_1_price(coder->state, pos_state);
if (short_rep_price < coder->optimum[1].price) {
coder->optimum[1].price = short_rep_price;
make_as_short_rep(coder->optimum[1]);
}
}
uint32_t len_end = (len_main >= rep_lens[rep_max_index])
? len_main
: rep_lens[rep_max_index];
if (len_end < 2) {
*back_res = coder->optimum[1].back_prev;
*len_res = 1;
return;
}
coder->optimum[1].pos_prev = 0;
for (uint32_t i = 0; i < REP_DISTANCES; ++i)
coder->optimum[0].backs[i] = reps[i];
uint32_t len = len_end;
do {
coder->optimum[len].price = INFINITY_PRICE;
} while (--len >= 2);
uint32_t (*distances_prices)[FULL_DISTANCES] = coder->distances_prices;
uint32_t (*pos_slot_prices)[DIST_TABLE_SIZE_MAX] = coder->pos_slot_prices;
uint32_t *align_prices = coder->align_prices;
for (uint32_t i = 0; i < REP_DISTANCES; ++i) {
uint32_t rep_len = rep_lens[i];
if (rep_len < 2)
continue;
uint32_t price = rep_match_price;
get_pure_rep_price(price, i, coder->state, pos_state);
do {
const uint32_t cur_and_len_price = price
+ length_get_price(
coder->rep_match_len_encoder,
rep_len - 2, pos_state);
if (cur_and_len_price < coder->optimum[rep_len].price) {
coder->optimum[rep_len].price = cur_and_len_price;
coder->optimum[rep_len].pos_prev = 0;
coder->optimum[rep_len].back_prev = i;
coder->optimum[rep_len].prev_1_is_char = false;
}
} while (--rep_len >= 2);
}
uint32_t normal_match_price = match_price
+ bit_get_price_0(coder->is_rep[coder->state]);
len = (rep_lens[0] >= 2) ? rep_lens[0] + 1 : 2;
if (len <= len_main) {
uint32_t offs = 0;
while (len > match_distances[offs + 1])
offs += 2;
for(; ; ++len) {
const uint32_t distance = match_distances[offs + 2];
uint32_t cur_and_len_price = normal_match_price;
get_pos_len_price(cur_and_len_price, distance, len, pos_state);
if (cur_and_len_price < coder->optimum[len].price) {
coder->optimum[len].price = cur_and_len_price;
coder->optimum[len].pos_prev = 0;
coder->optimum[len].back_prev = distance + REP_DISTANCES;
coder->optimum[len].prev_1_is_char = false;
}
if (len == match_distances[offs + 1]) {
offs += 2;
if (offs == num_distance_pairs)
break;
}
}
}
//////////////////
// Big loop ;-) //
//////////////////
uint32_t cur = 0;
// The rest of this function is a huge while-loop. To avoid extreme
// indentation, the indentation level is not increased here.
while (true) {
++cur;
assert(cur < OPTS);
if (cur == len_end) {
backward(coder, len_res, back_res, cur);
return;
}
uint32_t new_len;
lzma_read_match_distances(coder, &new_len, &num_distance_pairs);
if (new_len >= fast_bytes) {
coder->num_distance_pairs = num_distance_pairs;
coder->longest_match_length = new_len;
coder->longest_match_was_found = true;
backward(coder, len_res, back_res, cur);
return;
}
++position;
uint32_t pos_prev = coder->optimum[cur].pos_prev;
uint32_t state;
if (coder->optimum[cur].prev_1_is_char) {
--pos_prev;
if (coder->optimum[cur].prev_2) {
state = coder->optimum[coder->optimum[cur].pos_prev_2].state;
if (coder->optimum[cur].back_prev_2 < REP_DISTANCES)
update_rep(state);
else
update_match(state);
} else {
state = coder->optimum[pos_prev].state;
}
update_char(state);
} else {
state = coder->optimum[pos_prev].state;
}
if (pos_prev == cur - 1) {
if (is_short_rep(coder->optimum[cur]))
update_short_rep(state);
else
update_char(state);
} else {
uint32_t pos;
if (coder->optimum[cur].prev_1_is_char && coder->optimum[cur].prev_2) {
pos_prev = coder->optimum[cur].pos_prev_2;
pos = coder->optimum[cur].back_prev_2;
update_rep(state);
} else {
pos = coder->optimum[cur].back_prev;
if (pos < REP_DISTANCES)
update_rep(state);
else
update_match(state);
}
if (pos < REP_DISTANCES) {
reps[0] = coder->optimum[pos_prev].backs[pos];
uint32_t i;
for (i = 1; i <= pos; ++i)
reps[i] = coder->optimum[pos_prev].backs[i - 1];
for (; i < REP_DISTANCES; ++i)
reps[i] = coder->optimum[pos_prev].backs[i];
} else {
reps[0] = pos - REP_DISTANCES;
for (uint32_t i = 1; i < REP_DISTANCES; ++i)
reps[i] = coder->optimum[pos_prev].backs[i - 1];
}
}
coder->optimum[cur].state = state;
for (uint32_t i = 0; i < REP_DISTANCES; ++i)
coder->optimum[cur].backs[i] = reps[i];
const uint32_t cur_price = coder->optimum[cur].price;
buf = coder->lz.buffer + coder->lz.read_pos - 1;
current_byte = *buf;
match_byte = *(buf - reps[0] - 1);
pos_state = position & pos_mask;
const uint32_t cur_and_1_price = cur_price
+ bit_get_price_0(coder->is_match[state][pos_state])
+ literal_get_price(
literal_get_subcoder(coder->literal_coder,
position, buf[-1]),
!is_char_state(state), match_byte, current_byte);
bool next_is_char = false;
if (cur_and_1_price < coder->optimum[cur + 1].price) {
coder->optimum[cur + 1].price = cur_and_1_price;
coder->optimum[cur + 1].pos_prev = cur;
make_as_char(coder->optimum[cur + 1]);
next_is_char = true;
}
match_price = cur_price
+ bit_get_price_1(coder->is_match[state][pos_state]);
rep_match_price = match_price
+ bit_get_price_1(coder->is_rep[state]);
if (match_byte == current_byte
&& !(coder->optimum[cur + 1].pos_prev < cur
&& coder->optimum[cur + 1].back_prev == 0)) {
const uint32_t short_rep_price = rep_match_price
+ get_rep_len_1_price(state, pos_state);
if (short_rep_price <= coder->optimum[cur + 1].price) {
coder->optimum[cur + 1].price = short_rep_price;
coder->optimum[cur + 1].pos_prev = cur;
make_as_short_rep(coder->optimum[cur + 1]);
next_is_char = true;
}
}
uint32_t num_available_bytes_full
= coder->lz.write_pos - coder->lz.read_pos + 1;
num_available_bytes_full = MIN(OPTS - 1 - cur, num_available_bytes_full);
num_available_bytes = num_available_bytes_full;
if (num_available_bytes < 2)
continue;
if (num_available_bytes > fast_bytes)
num_available_bytes = fast_bytes;
if (!next_is_char && match_byte != current_byte) { // speed optimization
// try literal + rep0
const uint32_t back_offset = reps[0] + 1;
const uint32_t limit = MIN(num_available_bytes_full, fast_bytes + 1);
uint32_t temp;
for (temp = 1; temp < limit
&& buf[temp] == *(buf + temp - back_offset);
++temp) ;
const uint32_t len_test_2 = temp - 1;
if (len_test_2 >= 2) {
uint32_t state_2 = state;
update_char(state_2);
const uint32_t pos_state_next = (position + 1) & pos_mask;
const uint32_t next_rep_match_price = cur_and_1_price
+ bit_get_price_1(coder->is_match[state_2][pos_state_next])
+ bit_get_price_1(coder->is_rep[state_2]);
// for (; len_test_2 >= 2; --len_test_2) {
const uint32_t offset = cur + 1 + len_test_2;
while (len_end < offset)
coder->optimum[++len_end].price = INFINITY_PRICE;
uint32_t cur_and_len_price = next_rep_match_price;
get_rep_price(cur_and_len_price,
0, len_test_2, state_2, pos_state_next);
if (cur_and_len_price < coder->optimum[offset].price) {
coder->optimum[offset].price = cur_and_len_price;
coder->optimum[offset].pos_prev = cur + 1;
coder->optimum[offset].back_prev = 0;
coder->optimum[offset].prev_1_is_char = true;
coder->optimum[offset].prev_2 = false;
}
// }
}
}
uint32_t start_len = 2; // speed optimization
for (uint32_t rep_index = 0; rep_index < REP_DISTANCES; ++rep_index) {
const uint32_t back_offset = reps[rep_index] + 1;
if (buf[0] != *(buf - back_offset) || buf[1] != *(buf + 1 - back_offset))
continue;
uint32_t len_test;
for (len_test = 2; len_test < num_available_bytes
&& buf[len_test] == *(buf + len_test - back_offset);
++len_test) ;
while (len_end < cur + len_test)
coder->optimum[++len_end].price = INFINITY_PRICE;
const uint32_t len_test_temp = len_test;
uint32_t price = rep_match_price;
get_pure_rep_price(price, rep_index, state, pos_state);
do {
const uint32_t cur_and_len_price = price
+ length_get_price(coder->rep_match_len_encoder,
len_test - 2, pos_state);
if (cur_and_len_price < coder->optimum[cur + len_test].price) {
coder->optimum[cur + len_test].price = cur_and_len_price;
coder->optimum[cur + len_test].pos_prev = cur;
coder->optimum[cur + len_test].back_prev = rep_index;
coder->optimum[cur + len_test].prev_1_is_char = false;
}
} while (--len_test >= 2);
len_test = len_test_temp;
if (rep_index == 0)
start_len = len_test + 1;
uint32_t len_test_2 = len_test + 1;
const uint32_t limit = MIN(num_available_bytes_full,
len_test_2 + fast_bytes);
for (; len_test_2 < limit
&& buf[len_test_2] == *(buf + len_test_2 - back_offset);
++len_test_2) ;
len_test_2 -= len_test + 1;
if (len_test_2 >= 2) {
uint32_t state_2 = state;
update_rep(state_2);
uint32_t pos_state_next = (position + len_test) & pos_mask;
const uint32_t cur_and_len_char_price = price
+ length_get_price(coder->rep_match_len_encoder,
len_test - 2, pos_state)
+ bit_get_price_0(coder->is_match[state_2][pos_state_next])
+ literal_get_price(
literal_get_subcoder(coder->literal_coder,
position + len_test, buf[len_test - 1]),
true, *(buf + len_test - back_offset), buf[len_test]);
update_char(state_2);
pos_state_next = (position + len_test + 1) & pos_mask;
const uint32_t next_rep_match_price = cur_and_len_char_price
+ bit_get_price_1(coder->is_match[state_2][pos_state_next])
+ bit_get_price_1(coder->is_rep[state_2]);
// for(; len_test_2 >= 2; len_test_2--) {
const uint32_t offset = cur + len_test + 1 + len_test_2;
while (len_end < offset)
coder->optimum[++len_end].price = INFINITY_PRICE;
uint32_t cur_and_len_price = next_rep_match_price;
get_rep_price(cur_and_len_price,
0, len_test_2, state_2, pos_state_next);
if (cur_and_len_price < coder->optimum[offset].price) {
coder->optimum[offset].price = cur_and_len_price;
coder->optimum[offset].pos_prev = cur + len_test + 1;
coder->optimum[offset].back_prev = 0;
coder->optimum[offset].prev_1_is_char = true;
coder->optimum[offset].prev_2 = true;
coder->optimum[offset].pos_prev_2 = cur;
coder->optimum[offset].back_prev_2 = rep_index;
}
// }
}
}
// for (uint32_t len_test = 2; len_test <= new_len; ++len_test)
if (new_len > num_available_bytes) {
new_len = num_available_bytes;
for (num_distance_pairs = 0;
new_len > match_distances[num_distance_pairs + 1];
num_distance_pairs += 2) ;
match_distances[num_distance_pairs + 1] = new_len;
num_distance_pairs += 2;
}
if (new_len >= start_len) {
normal_match_price = match_price
+ bit_get_price_0(coder->is_rep[state]);
while (len_end < cur + new_len)
coder->optimum[++len_end].price = INFINITY_PRICE;
uint32_t offs = 0;
while (start_len > match_distances[offs + 1])
offs += 2;
uint32_t cur_back = match_distances[offs + 2];
uint32_t pos_slot = get_pos_slot_2(cur_back);
for (uint32_t len_test = start_len; ; ++len_test) {
uint32_t cur_and_len_price = normal_match_price;
const uint32_t len_to_pos_state = get_len_to_pos_state(len_test);
if (cur_back < FULL_DISTANCES)
cur_and_len_price += distances_prices[
len_to_pos_state][cur_back];
else
cur_and_len_price += pos_slot_prices[
len_to_pos_state][pos_slot]
+ align_prices[cur_back & ALIGN_MASK];
cur_and_len_price += length_get_price(coder->len_encoder,
len_test - MATCH_MIN_LEN, pos_state);
if (cur_and_len_price < coder->optimum[cur + len_test].price) {
coder->optimum[cur + len_test].price = cur_and_len_price;
coder->optimum[cur + len_test].pos_prev = cur;
coder->optimum[cur + len_test].back_prev
= cur_back + REP_DISTANCES;
coder->optimum[cur + len_test].prev_1_is_char = false;
}
if (len_test == match_distances[offs + 1]) {
// Try Match + Literal + Rep0
const uint32_t back_offset = cur_back + 1;
uint32_t len_test_2 = len_test + 1;
const uint32_t limit = MIN(num_available_bytes_full,
len_test_2 + fast_bytes);
for (; len_test_2 < limit &&
buf[len_test_2] == *(buf + len_test_2 - back_offset);
++len_test_2) ;
len_test_2 -= len_test + 1;
if (len_test_2 >= 2) {
uint32_t state_2 = state;
update_match(state_2);
uint32_t pos_state_next
= (position + len_test) & pos_mask;
const uint32_t cur_and_len_char_price = cur_and_len_price
+ bit_get_price_0(
coder->is_match[state_2][pos_state_next])
+ literal_get_price(
literal_get_subcoder(
coder->literal_coder,
position + len_test,
buf[len_test - 1]),
true,
*(buf + len_test - back_offset),
buf[len_test]);
update_char(state_2);
pos_state_next = (pos_state_next + 1) & pos_mask;
const uint32_t next_rep_match_price
= cur_and_len_char_price
+ bit_get_price_1(
coder->is_match[state_2][pos_state_next])
+ bit_get_price_1(coder->is_rep[state_2]);
// for(; len_test_2 >= 2; --len_test_2) {
const uint32_t offset = cur + len_test + 1 + len_test_2;
while (len_end < offset)
coder->optimum[++len_end].price = INFINITY_PRICE;
cur_and_len_price = next_rep_match_price;
get_rep_price(cur_and_len_price,
0, len_test_2, state_2, pos_state_next);
if (cur_and_len_price < coder->optimum[offset].price) {
coder->optimum[offset].price = cur_and_len_price;
coder->optimum[offset].pos_prev = cur + len_test + 1;
coder->optimum[offset].back_prev = 0;
coder->optimum[offset].prev_1_is_char = true;
coder->optimum[offset].prev_2 = true;
coder->optimum[offset].pos_prev_2 = cur;
coder->optimum[offset].back_prev_2
= cur_back + REP_DISTANCES;
}
// }
}
offs += 2;
if (offs == num_distance_pairs)
break;
cur_back = match_distances[offs + 2];
if (cur_back >= FULL_DISTANCES)
pos_slot = get_pos_slot_2(cur_back);
}
}
}
} // Closes: while (true)
}