mirror of
https://git.tukaani.org/xz.git
synced 2025-04-03 06:10:57 +00:00
- Added lzma_memlimit_max() and lzma_memlimit_reached() API functions. - Added simple estimation of malloc()'s memory usage overhead. - Fixed integer overflow detection in lzma_memlimit_alloc(). - Made some white space cleanups and added more comments. The description of lzma_memlimit_max() in memlimit.h is bad and should be improved.
289 lines
6.8 KiB
C
289 lines
6.8 KiB
C
///////////////////////////////////////////////////////////////////////////////
|
|
//
|
|
/// \file memory_limitter.c
|
|
/// \brief Limitting memory usage
|
|
//
|
|
// Copyright (C) 2007 Lasse Collin
|
|
//
|
|
// This library is free software; you can redistribute it and/or
|
|
// modify it under the terms of the GNU Lesser General Public
|
|
// License as published by the Free Software Foundation; either
|
|
// version 2.1 of the License, or (at your option) any later version.
|
|
//
|
|
// This library is distributed in the hope that it will be useful,
|
|
// but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
|
// Lesser General Public License for more details.
|
|
//
|
|
///////////////////////////////////////////////////////////////////////////////
|
|
|
|
#include "common.h"
|
|
|
|
|
|
/// Rounds an unsigned integer upwards to the next multiple.
|
|
#define my_ceil(num, multiple) \
|
|
((num) + (((multiple) - ((num) % (multiple))) % (multiple)))
|
|
|
|
|
|
/// Add approximated overhead of malloc() to size and round upwards to the
|
|
/// next multiple of 2 * sizeof(size_t). I suppose that most malloc()
|
|
/// implementations align small allocations this way, but the overhead
|
|
/// varies due to several reasons (free lists, mmap() usage etc.).
|
|
///
|
|
/// This doesn't need to be exact at all. It's enough to take into account
|
|
/// that there is some overhead. That way our memory usage count won't be
|
|
/// horribly wrong if we are used to allocate lots of small memory chunks.
|
|
#define malloc_ceil(size) \
|
|
my_ceil((size) + 2 * sizeof(void *), 2 * sizeof(size_t))
|
|
|
|
|
|
typedef struct lzma_memlimit_list_s lzma_memlimit_list;
|
|
struct lzma_memlimit_list_s {
|
|
lzma_memlimit_list *next;
|
|
void *ptr;
|
|
size_t size;
|
|
};
|
|
|
|
|
|
struct lzma_memlimit_s {
|
|
/// List of allocated memory chunks
|
|
lzma_memlimit_list *list;
|
|
|
|
/// Number of bytes currently allocated; this includes the memory
|
|
/// needed for the helper structures.
|
|
size_t used;
|
|
|
|
/// Memory usage limit
|
|
size_t limit;
|
|
|
|
/// Maximum amount of memory that have been or would have been needed.
|
|
/// That is, this is updated also if memory allocation fails, letting
|
|
/// the application check how much memory was tried to be allocated
|
|
/// in total.
|
|
size_t max;
|
|
|
|
/// True if lzma_memlimit_alloc() has returned NULL due to memory
|
|
/// usage limit.
|
|
bool limit_reached;
|
|
};
|
|
|
|
|
|
extern LZMA_API lzma_memlimit *
|
|
lzma_memlimit_create(size_t limit)
|
|
{
|
|
const size_t base_size = malloc_ceil(sizeof(lzma_memlimit));
|
|
|
|
if (limit < base_size)
|
|
return NULL;
|
|
|
|
lzma_memlimit *mem = malloc(sizeof(lzma_memlimit));
|
|
|
|
if (mem != NULL) {
|
|
mem->list = NULL;
|
|
mem->used = base_size;
|
|
mem->limit = limit;
|
|
mem->max = base_size;
|
|
mem->limit_reached = false;
|
|
}
|
|
|
|
return mem;
|
|
}
|
|
|
|
|
|
extern LZMA_API void
|
|
lzma_memlimit_set(lzma_memlimit *mem, size_t limit)
|
|
{
|
|
mem->limit = limit;
|
|
return;
|
|
}
|
|
|
|
|
|
extern LZMA_API size_t
|
|
lzma_memlimit_get(const lzma_memlimit *mem)
|
|
{
|
|
return mem->limit;
|
|
}
|
|
|
|
|
|
extern LZMA_API size_t
|
|
lzma_memlimit_used(const lzma_memlimit *mem)
|
|
{
|
|
return mem->used;
|
|
}
|
|
|
|
|
|
extern LZMA_API size_t
|
|
lzma_memlimit_max(lzma_memlimit *mem, lzma_bool clear)
|
|
{
|
|
const size_t ret = mem->max;
|
|
|
|
if (clear)
|
|
mem->max = mem->used;
|
|
|
|
return ret;
|
|
}
|
|
|
|
|
|
extern LZMA_API lzma_bool
|
|
lzma_memlimit_reached(lzma_memlimit *mem, lzma_bool clear)
|
|
{
|
|
const bool ret = mem->limit_reached;
|
|
|
|
if (clear)
|
|
mem->limit_reached = false;
|
|
|
|
return ret;
|
|
}
|
|
|
|
|
|
extern LZMA_API size_t
|
|
lzma_memlimit_count(const lzma_memlimit *mem)
|
|
{
|
|
// This is slow; we could have a counter in lzma_memlimit
|
|
// for fast version. I expect the primary use of this
|
|
// function to be limited to easy checking of memory leaks,
|
|
// in which this implementation is just fine.
|
|
size_t count = 0;
|
|
const lzma_memlimit_list *record = mem->list;
|
|
|
|
while (record != NULL) {
|
|
++count;
|
|
record = record->next;
|
|
}
|
|
|
|
return count;
|
|
}
|
|
|
|
|
|
extern LZMA_API void
|
|
lzma_memlimit_end(lzma_memlimit *mem, lzma_bool free_allocated)
|
|
{
|
|
if (mem == NULL)
|
|
return;
|
|
|
|
lzma_memlimit_list *record = mem->list;
|
|
while (record != NULL) {
|
|
if (free_allocated)
|
|
free(record->ptr);
|
|
|
|
lzma_memlimit_list *tmp = record;
|
|
record = record->next;
|
|
free(tmp);
|
|
}
|
|
|
|
free(mem);
|
|
|
|
return;
|
|
}
|
|
|
|
|
|
extern LZMA_API void *
|
|
lzma_memlimit_alloc(lzma_memlimit *mem, size_t nmemb, size_t size)
|
|
{
|
|
// While liblzma always sets nmemb to one, do this multiplication
|
|
// to make these functions usable e.g. with zlib and libbzip2.
|
|
// Making sure that this doesn't overflow is up to the application.
|
|
size *= nmemb;
|
|
|
|
// Some malloc() implementations return NULL on malloc(0). We like
|
|
// to get a non-NULL value.
|
|
if (size == 0)
|
|
size = 1;
|
|
|
|
// Calculate how much memory we are going to allocate in reality.
|
|
const size_t total_size = malloc_ceil(size)
|
|
+ malloc_ceil(sizeof(lzma_memlimit_list));
|
|
|
|
// Integer overflow protection for total_size and mem->used.
|
|
if (total_size <= size || SIZE_MAX - total_size < mem->used) {
|
|
mem->max = SIZE_MAX;
|
|
mem->limit_reached = true;
|
|
return NULL;
|
|
}
|
|
|
|
// Update the maximum memory requirement counter if needed. This
|
|
// is updated even if memory allocation would fail or limit would
|
|
// be reached.
|
|
if (mem->used + total_size > mem->max)
|
|
mem->max = mem->used + total_size;
|
|
|
|
// Check if we would stay in the memory usage limits. We need to
|
|
// check also that the current usage is in the limits, because
|
|
// the application could have decreased the limit between calls
|
|
// to this function.
|
|
if (mem->limit < mem->used || mem->limit - mem->used < total_size) {
|
|
mem->limit_reached = true;
|
|
return NULL;
|
|
}
|
|
|
|
// Allocate separate memory chunks for lzma_memlimit_list and the
|
|
// actual requested memory. Optimizing this to use only one
|
|
// allocation is not a good idea, because applications may want to
|
|
// detach lzma_extra structures that have been allocated with
|
|
// lzma_memlimit_alloc().
|
|
lzma_memlimit_list *record = malloc(sizeof(lzma_memlimit_list));
|
|
void *ptr = malloc(size);
|
|
|
|
if (record == NULL || ptr == NULL) {
|
|
free(record);
|
|
free(ptr);
|
|
return NULL;
|
|
}
|
|
|
|
// Add the new entry to the beginning of the list. This should be
|
|
// more efficient when freeing memory, because usually it is
|
|
// "last allocated, first freed".
|
|
record->next = mem->list;
|
|
record->ptr = ptr;
|
|
record->size = total_size;
|
|
|
|
mem->list = record;
|
|
mem->used += total_size;
|
|
|
|
return ptr;
|
|
}
|
|
|
|
|
|
extern LZMA_API void
|
|
lzma_memlimit_detach(lzma_memlimit *mem, void *ptr)
|
|
{
|
|
if (ptr == NULL || mem->list == NULL)
|
|
return;
|
|
|
|
lzma_memlimit_list *record = mem->list;
|
|
lzma_memlimit_list *prev = NULL;
|
|
|
|
while (record->ptr != ptr) {
|
|
prev = record;
|
|
record = record->next;
|
|
if (record == NULL)
|
|
return;
|
|
}
|
|
|
|
if (prev != NULL)
|
|
prev->next = record->next;
|
|
else
|
|
mem->list = record->next;
|
|
|
|
assert(mem->used >= record->size);
|
|
mem->used -= record->size;
|
|
|
|
free(record);
|
|
|
|
return;
|
|
}
|
|
|
|
|
|
extern LZMA_API void
|
|
lzma_memlimit_free(lzma_memlimit *mem, void *ptr)
|
|
{
|
|
if (ptr == NULL)
|
|
return;
|
|
|
|
lzma_memlimit_detach(mem, ptr);
|
|
|
|
free(ptr);
|
|
|
|
return;
|
|
}
|