mirror of
https://git.tukaani.org/xz.git
synced 2025-12-11 16:08:45 +00:00
This still relies on CMAKE_SYSTEM_PROCESSOR. CMake 4.1 added more CMAKE_<LANG>_COMPILER_ARCHITECTURE_ID values to detect the arch in a more defined manner, but 4.1 is too new to require for now. Thanks-to: Li Chenggang <lichenggang@deepin.org> Closes: https://github.com/tukaani-project/xz/pull/186
223 lines
9.1 KiB
CMake
223 lines
9.1 KiB
CMake
# SPDX-License-Identifier: 0BSD
|
|
|
|
#############################################################################
|
|
#
|
|
# tuklib_integer.cmake - see tuklib_integer.m4 for description and comments
|
|
#
|
|
# Author: Lasse Collin
|
|
#
|
|
#############################################################################
|
|
|
|
include("${CMAKE_CURRENT_LIST_DIR}/tuklib_common.cmake")
|
|
include(TestBigEndian)
|
|
include(CheckCSourceCompiles)
|
|
include(CheckIncludeFile)
|
|
include(CheckSymbolExists)
|
|
|
|
# An internal helper for tuklib_integer that attempts to detect if
|
|
# -mstrict-align or -mno-strict-align is in effect. This sets the
|
|
# cache variable TUKLIB_INTEGER_STRICT_ALIGN to ON if OBJDUMP_REGEX
|
|
# matches the objdump output of a check program. Otherwise it is set to OFF.
|
|
function(tuklib_integer_internal_strict_align OBJDUMP_REGEX)
|
|
if(NOT DEFINED TUKLIB_INTEGER_STRICT_ALIGN)
|
|
# Build a static library because then the function won't be optimized
|
|
# away, and there won't be any unrelated startup code either.
|
|
set(CMAKE_TRY_COMPILE_TARGET_TYPE STATIC_LIBRARY)
|
|
|
|
# CMake >= 3.25 wouldn't require us to create a temporary file,
|
|
# but the following method is compatible with 3.20.
|
|
file(WRITE "${CMAKE_BINARY_DIR}/tuklib_integer_strict_align.c" "
|
|
#include <string.h>
|
|
unsigned int check_strict_align(const void *p)
|
|
{
|
|
unsigned int i;
|
|
memcpy(&i, p, sizeof(i));
|
|
return i;
|
|
}
|
|
")
|
|
|
|
# Force -O2 because memcpy() won't be optimized out if optimizations
|
|
# are disabled.
|
|
try_compile(
|
|
TRY_COMPILE_RESULT
|
|
"${CMAKE_BINARY_DIR}"
|
|
"${CMAKE_BINARY_DIR}/tuklib_integer_strict_align.c"
|
|
COMPILE_DEFINITIONS "${CMAKE_REQUIRED_DEFINITIONS}"
|
|
CMAKE_FLAGS "-DCOMPILE_DEFINITIONS=${CMAKE_REQUIRED_FLAGS} -O2"
|
|
COPY_FILE "${CMAKE_BINARY_DIR}/tuklib_integer_strict_align.a"
|
|
)
|
|
|
|
if(NOT TRY_COMPILE_RESULT)
|
|
message(FATAL_ERROR
|
|
"Compilation of the strict align check failed. "
|
|
"Either the specified compiler flags are broken "
|
|
"or ${CMAKE_CURRENT_FUNCTION_LIST_FILE} has a bug.")
|
|
endif()
|
|
|
|
# Use WORKING_DIRECTORY instead of passing the full path to objdump.
|
|
# This ensures that the pathname won't affect the objdump output,
|
|
# which could result in an unwanted regex match in the next step.
|
|
execute_process(
|
|
COMMAND "${CMAKE_OBJDUMP}" -d "tuklib_integer_strict_align.a"
|
|
WORKING_DIRECTORY "${CMAKE_BINARY_DIR}"
|
|
OUTPUT_VARIABLE OBJDUMP_OUTPUT
|
|
RESULT_VARIABLE OBJDUMP_RESULT
|
|
)
|
|
|
|
# FIXME? Should we remove the temporary files here?
|
|
|
|
# Look for instructions that load unsigned bytes. If none are found,
|
|
# assume that -mno-strict-align is in effect.
|
|
if(OBJDUMP_RESULT STREQUAL "0" AND
|
|
OBJDUMP_OUTPUT MATCHES "${OBJDUMP_REGEX}")
|
|
set(TUKLIB_INTEGER_STRICT_ALIGN ON CACHE INTERNAL "")
|
|
else()
|
|
set(TUKLIB_INTEGER_STRICT_ALIGN OFF CACHE INTERNAL "")
|
|
endif()
|
|
endif()
|
|
endfunction()
|
|
|
|
function(tuklib_integer TARGET_OR_ALL)
|
|
# Check for endianness. Unlike the Autoconf's AC_C_BIGENDIAN, this doesn't
|
|
# support Apple universal binaries. The CMake module will leave the
|
|
# variable unset so we can catch that situation here instead of continuing
|
|
# as if we were little endian.
|
|
test_big_endian(WORDS_BIGENDIAN)
|
|
if(NOT DEFINED WORDS_BIGENDIAN)
|
|
message(FATAL_ERROR "Cannot determine endianness")
|
|
endif()
|
|
tuklib_add_definition_if("${TARGET_OR_ALL}" WORDS_BIGENDIAN)
|
|
|
|
# Look for a byteswapping method.
|
|
check_c_source_compiles("
|
|
int main(void)
|
|
{
|
|
__builtin_bswap16(1);
|
|
__builtin_bswap32(1);
|
|
__builtin_bswap64(1);
|
|
return 0;
|
|
}
|
|
"
|
|
HAVE___BUILTIN_BSWAPXX)
|
|
if(HAVE___BUILTIN_BSWAPXX)
|
|
tuklib_add_definitions("${TARGET_OR_ALL}" HAVE___BUILTIN_BSWAPXX)
|
|
else()
|
|
check_include_file(byteswap.h HAVE_BYTESWAP_H)
|
|
if(HAVE_BYTESWAP_H)
|
|
tuklib_add_definitions("${TARGET_OR_ALL}" HAVE_BYTESWAP_H)
|
|
check_symbol_exists(bswap_16 byteswap.h HAVE_BSWAP_16)
|
|
tuklib_add_definition_if("${TARGET_OR_ALL}" HAVE_BSWAP_16)
|
|
check_symbol_exists(bswap_32 byteswap.h HAVE_BSWAP_32)
|
|
tuklib_add_definition_if("${TARGET_OR_ALL}" HAVE_BSWAP_32)
|
|
check_symbol_exists(bswap_64 byteswap.h HAVE_BSWAP_64)
|
|
tuklib_add_definition_if("${TARGET_OR_ALL}" HAVE_BSWAP_64)
|
|
else()
|
|
check_include_file(sys/endian.h HAVE_SYS_ENDIAN_H)
|
|
if(HAVE_SYS_ENDIAN_H)
|
|
tuklib_add_definitions("${TARGET_OR_ALL}" HAVE_SYS_ENDIAN_H)
|
|
else()
|
|
check_include_file(sys/byteorder.h HAVE_SYS_BYTEORDER_H)
|
|
tuklib_add_definition_if("${TARGET_OR_ALL}"
|
|
HAVE_SYS_BYTEORDER_H)
|
|
endif()
|
|
endif()
|
|
endif()
|
|
|
|
# Guess that unaligned access is fast on these archs:
|
|
# - 32/64-bit x86 / x86-64
|
|
# - 32/64-bit big endian PowerPC
|
|
# - 64-bit little endian PowerPC
|
|
# - 32/64-bit Loongarch (*)
|
|
# - Some 32-bit ARM
|
|
# - Some 64-bit ARM64 (AArch64)
|
|
# - Some 32/64-bit RISC-V
|
|
#
|
|
# (*) See sections 7.4, 8.1, and 8.2:
|
|
# https://github.com/loongson/la-softdev-convention/blob/v0.2/la-softdev-convention.adoc
|
|
#
|
|
# That is, desktop and server processors likely support
|
|
# unaligned access in hardware but embedded processors
|
|
# might not. GCC defaults to -mno-strict-align and so
|
|
# do majority of GNU/Linux distributions. As of
|
|
# GCC 15.2, there is no predefined macro to detect
|
|
# if -mstrict-align or -mno-strict-align is in effect.
|
|
# We use heuristics based on compiler output.
|
|
#
|
|
# CMake doesn't provide a standardized/normalized list of processor arch
|
|
# names. For example, x86-64 may be "x86_64" (Linux), "AMD64" (Windows),
|
|
# or even "EM64T" (64-bit WinXP).
|
|
set(FAST_UNALIGNED_GUESS OFF)
|
|
string(TOLOWER "${CMAKE_SYSTEM_PROCESSOR}" PROCESSOR)
|
|
|
|
# There is no ^ in the first regex branch to allow "i" at the beginning
|
|
# so it can match "i386" to "i786", and "x86_64".
|
|
if(PROCESSOR MATCHES "[x34567]86|^x64|^amd64|^em64t")
|
|
set(FAST_UNALIGNED_GUESS ON)
|
|
|
|
elseif(PROCESSOR MATCHES "^powerpc|^ppc")
|
|
if(WORDS_BIGENDIAN OR PROCESSOR MATCHES "64")
|
|
set(FAST_UNALIGNED_GUESS ON)
|
|
endif()
|
|
|
|
elseif(PROCESSOR MATCHES "^arm|^aarch64|^riscv")
|
|
# On 32-bit and 64-bit ARM, GCC and Clang
|
|
# #define __ARM_FEATURE_UNALIGNED if
|
|
# unaligned access is supported.
|
|
#
|
|
# Exception: GCC at least up to 13.2.0
|
|
# defines it even when using -mstrict-align
|
|
# so in that case this autodetection goes wrong.
|
|
# Most of the time -mstrict-align isn't used so it
|
|
# shouldn't be a common problem in practice. See:
|
|
# https://gcc.gnu.org/bugzilla/show_bug.cgi?id=111555
|
|
#
|
|
# RISC-V C API Specification says that if
|
|
# __riscv_misaligned_fast is defined then
|
|
# unaligned access is known to be fast.
|
|
#
|
|
# MSVC is handled as a special case: We assume that
|
|
# 32/64-bit ARM supports fast unaligned access.
|
|
# If MSVC gets RISC-V support then this will assume
|
|
# fast unaligned access on RISC-V too.
|
|
check_c_source_compiles("
|
|
#if !defined(__ARM_FEATURE_UNALIGNED) \
|
|
&& !defined(__riscv_misaligned_fast) \
|
|
&& !defined(_MSC_VER)
|
|
compile error
|
|
#endif
|
|
int main(void) { return 0; }
|
|
"
|
|
TUKLIB_FAST_UNALIGNED_DEFINED_BY_PREPROCESSOR)
|
|
if(TUKLIB_FAST_UNALIGNED_DEFINED_BY_PREPROCESSOR)
|
|
set(FAST_UNALIGNED_GUESS ON)
|
|
endif()
|
|
|
|
elseif(PROCESSOR MATCHES "^loongarch")
|
|
tuklib_integer_internal_strict_align("[ \t]ld\\.bu[ \t]")
|
|
if(NOT TUKLIB_INTEGER_STRICT_ALIGN)
|
|
set(FAST_UNALIGNED_GUESS ON)
|
|
endif()
|
|
endif()
|
|
|
|
option(TUKLIB_FAST_UNALIGNED_ACCESS
|
|
"Enable if the system supports *fast* unaligned memory access \
|
|
with 16-bit, 32-bit, and 64-bit integers."
|
|
"${FAST_UNALIGNED_GUESS}")
|
|
tuklib_add_definition_if("${TARGET_OR_ALL}" TUKLIB_FAST_UNALIGNED_ACCESS)
|
|
|
|
# Unsafe type punning:
|
|
option(TUKLIB_USE_UNSAFE_TYPE_PUNNING
|
|
"This introduces strict aliasing violations and \
|
|
may result in broken code. However, this might improve performance \
|
|
in some cases, especially with old compilers \
|
|
(e.g. GCC 3 and early 4.x on x86, GCC < 6 on ARMv6 and ARMv7)."
|
|
OFF)
|
|
tuklib_add_definition_if("${TARGET_OR_ALL}" TUKLIB_USE_UNSAFE_TYPE_PUNNING)
|
|
|
|
# Check for GCC/Clang __builtin_assume_aligned().
|
|
check_c_source_compiles(
|
|
"int main(void) { __builtin_assume_aligned(\"\", 1); return 0; }"
|
|
HAVE___BUILTIN_ASSUME_ALIGNED)
|
|
tuklib_add_definition_if("${TARGET_OR_ALL}" HAVE___BUILTIN_ASSUME_ALIGNED)
|
|
endfunction()
|