XZ Utils is free general-purpose data compression software with a high compression ratio https://tukaani.org/xz/
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

2180 lines
84 KiB

XZ Utils Release Notes
======================
5.6.1 (2024-03-09)
IMPORTANT: This fixed bugs in the backdoor (CVE-2024-3094) (someone
had forgot to run Valgrind).
* liblzma: Fixed two bugs relating to GNU indirect function (IFUNC)
with GCC. The more serious bug caused a program linked with
liblzma to crash on start up if the flag -fprofile-generate was
used to build liblzma. The second bug caused liblzma to falsely
report an invalid write to Valgrind when loading liblzma.
* xz: Changed the messages for thread reduction due to memory
constraints to only appear under the highest verbosity level.
* Build:
- Fixed a build issue when the header file <linux/landlock.h>
was present on the system but the Landlock system calls were
not defined in <sys/syscall.h>.
- The CMake build now warns and disables NLS if both gettext
tools and pre-created .gmo files are missing. Previously,
this caused the CMake build to fail.
* Minor improvements to man pages.
* Minor improvements to tests.
5.6.0 (2024-02-24)
IMPORTANT: This added a backdoor (CVE-2024-3094). It's enabled only
in the release tarballs.
This bumps the minor version of liblzma because new features were
added. The API and ABI are still backward compatible with liblzma
5.4.x and 5.2.x and 5.0.x.
NOTE: As described in the NEWS for 5.5.2beta, the core components
are now under the BSD Zero Clause License (0BSD).
Since 5.5.2beta:
* liblzma:
- Disabled the branchless C variant in the LZMA decoder based
on the benchmark results from the community.
- Disabled x86-64 inline assembly on x32 to fix the build.
* Sandboxing support in xz:
- Landlock is now used even when xz needs to create files.
In this case the sandbox has to be more permissive than
when no files need to be created. A similar thing was
already in use with pledge(2) since 5.3.4alpha.
- Landlock and pledge(2) are now stricter when reading from
more than one input file and only writing to standard output.
- Added support for Landlock ABI version 4.
* CMake:
- Default to -O2 instead of -O3 with CMAKE_BUILD_TYPE=Release.
-O3 is not useful for speed and makes the code larger.
- Now builds lzmainfo and lzmadec.
- xzdiff, xzgrep, xzless, xzmore, and their symlinks are now
installed. The scripts are also tested during "make test".
- Added translation support for xz, lzmainfo, and the
man pages.
- Applied the symbol versioning workaround for MicroBlaze that
is used in the Autotools build.
- The general XZ Utils and liblzma API documentation is now
installed.
- The CMake component names were changed a little and several
were added. liblzma_Runtime and liblzma_Development are
unchanged.
- Minimum required CMake version is now 3.14. However,
translation support is disabled with CMake versions
older than 3.20.
- The CMake-based build is now close to feature parity with the
Autotools-based build. Most importantly a few tests aren't
run yet. Testing the CMake-based build on different operating
systems would be welcome now. See the comment at the top of
CMakeLists.txt.
* Fixed a bug in the Autotools feature test for ARM64 CRC32
instruction support for old versions of Clang. This did not
affect the CMake build.
* Windows:
- The build instructions in INSTALL and windows/INSTALL*.txt
were revised completely.
- windows/build-with-cmake.bat along with the instructions
in windows/INSTALL-MinGW-w64_with_CMake.txt should make
it very easy to build liblzma.dll and xz.exe on Windows
using CMake and MinGW-w64 with either GCC or Clang/LLVM.
- windows/build.bash was updated. It now works on MSYS2 and
on GNU/Linux (cross-compiling) to create a .zip and .7z
package for 32-bit and 64-bit x86 using GCC + MinGW-w64.
* The TODO file is no longer installed as part of the
documentation. The file is out of date and does not reflect
the actual tasks that will be completed in the future.
* Translations:
- Translated lzmainfo man pages are now installed. These
had been forgotten in earlier versions.
- Updated Croatian, Esperanto, German, Hungarian, Korean,
Polish, Romanian, Spanish, Swedish, Vietnamese, and Ukrainian
translations.
- Updated German, Korean, Romanian, and Ukrainian man page
translations.
* Added a few tests.
Summary of new features added in the 5.5.x development releases:
* liblzma:
- LZMA decoder: Speed optimizations to the C code and
added GCC & Clang compatible inline assembly for x86-64.
- Added lzma_mt_block_size() to recommend a Block size for
multithreaded encoding.
- Added CLMUL-based CRC32 on x86-64 and E2K with runtime
processor detection. Similar to CRC64, on 32-bit x86 it
isn't available unless --disable-assembler is used.
- Optimized the CRC32 calculation on ARM64 platforms using the
CRC32 instructions. Runtime detection for the instruction is
used on GNU/Linux, FreeBSD, Windows, and macOS. If the
compiler flags indicate unconditional CRC32 instruction
support (+crc) then the generic version is not built.
- Added definitions of mask values like
LZMA_INDEX_CHECK_MASK_CRC32 to <lzma/index.h>.
* xz:
- Multithreaded mode is now the default. This improves
compression speed and creates .xz files that can be
decompressed in multithreaded mode. The downsides are
increased memory usage and slightly worse compression ratio.
- Added a new command line option --filters to set the filter
chain using the liblzma filter string syntax.
- Added new command line options --filters1 ... --filters9 to
set additional filter chains using the liblzma filter string
syntax. The --block-list option now allows specifying filter
chains that were set using these new options.
- Ported the command line tools to Windows MSVC.
Visual Studio 2015 or later is required.
* Added lz4 support to xzdiff/xzcmp and xzgrep.
5.5.2beta (2024-02-14)
* Licensing change: The core components are now under the
BSD Zero Clause License (0BSD). In XZ Utils 5.4.6 and older
and 5.5.1alpha these components are in the public domain and
obviously remain so; the change affects the new releases only.
0BSD is an extremely permissive license which doesn't require
retaining or reproducing copyright or license notices when
distributing the code, thus in practice there is extremely
little difference to public domain.
* liblzma
- Significant speed optimizations to the LZMA decoder were
made. There are now three variants that can be chosen at
build time:
* Basic C version: This is a few percent faster than
5.4.x due to some new optimizations.
* Branchless C: This is currently the default on platforms
for which there is no assembly code. This should be a few
percent faster than the basic C version.
* x86-64 inline assembly. This works with GCC and Clang.
The default choice can currently be overridden by setting
LZMA_RANGE_DECODER_CONFIG in CPPFLAGS: 0 means the basic
version and 3 means that branchless C version.
- Optimized the CRC32 calculation on ARM64 platforms using the
CRC32 instructions. The instructions are optional in ARMv8.0
and are required in ARMv8.1 and later. Runtime detection for
the instruction is used on GNU/Linux, FreeBSD, Windows, and
macOS. If the compiler flags indicate unconditional CRC32
instruction support (+crc) then the generic version is not
built.
* Added lz4 support to xzdiff/xzcmp and xzgrep.
* Man pages of xzdiff/xzcmp, xzgrep, and xzmore were rewritten
to simplify licensing of the man page translations.
* Translations:
- Updated Chinese (simplified), German, Korean, Polish,
Romanian, Spanish, Swedish, and Ukrainian translations.
- Updated German, Korean, Romanian, and Ukrainian man page
translations.
* Small improvements to the tests.
* Added doc/examples/11_file_info.c. It was added to the Git
repository in 2017 but forgotten to be added into distribution
tarballs.
* Removed doc/examples_old. These were from 2012.
* Removed the macos/build.sh script. It had not been updated
since 2013.
5.5.1alpha (2024-01-26)
* Added a new filter for RISC-V binaries. The filter can be used
for 32-bit and 64-bit binaries with either little or big
endianness. In liblzma, the Filter ID is LZMA_FILTER_RISCV (0x0B)
and the xz option is --riscv. liblzma filter string syntax
recognizes this filter as "riscv".
* liblzma:
- Added lzma_mt_block_size() to recommend a Block size for
multithreaded encoding
- Added CLMUL-based CRC32 on x86-64 and E2K with runtime
processor detection. Similar to CRC64, on 32-bit x86 it
isn't available unless --disable-assembler is used.
- Implemented GNU indirect function (IFUNC) as a runtime
function dispatching method for CRC32 and CRC64 fast
implementations on x86. Only GNU/Linux (glibc) and FreeBSD
builds will use IFUNC, unless --enable-ifunc is specified to
configure.
- Added definitions of mask values like
LZMA_INDEX_CHECK_MASK_CRC32 to <lzma/index.h>.
- The XZ logo is now included in the Doxygen generated
documentation. It is licensed under Creative Commons
Attribution-ShareAlike 4.0.
* xz:
- Multithreaded mode is now the default. This improves
compression speed and creates .xz files that can be
decompressed multithreaded at the cost of increased memory
usage and slightly worse compression ratio.
- Added new command line option --filters to set the filter
chain using liblzma filter string syntax.
- Added new command line options --filters1 ... --filters9 to
set additional filter chains using liblzma filter string
syntax. The --block-list option now allows specifying filter
chains that were set using these new options.
- Added support for Linux Landlock as a sandboxing method.
- xzdec now supports pledge(2), Capsicum, and Linux Landlock as
sandboxing methods.
- Progress indicator time stats remain accurate after pausing
xz with SIGTSTP.
- Ported xz and xzdec to Windows MSVC. Visual Studio 2015 or
later is required.
* CMake Build:
- Supports pledge(2), Capsicum, and Linux Landlock sandboxing
methods.
- Replacement functions for getopt_long() are used on platforms
that do not have it.
* Enabled unaligned access by default on PowerPC64LE and on RISC-V
targets that define __riscv_misaligned_fast.
* Tests:
- Added two new fuzz targets to OSS-Fuzz.
- Implemented Continuous Integration (CI) testing using
GitHub Actions.
* Changed quoting style from `...' to '...' in all messages,
scripts, and documentation.
* Added basic Codespell support to help catch typo errors.
5.4.6 (2024-01-26)
* Fixed a bug involving internal function pointers in liblzma not
being initialized to NULL. The bug can only be triggered if
lzma_filters_update() is called on a LZMA1 encoder, so it does
not affect xz or any application known to us that uses liblzma.
* xz:
- Fixed a regression introduced in 5.4.2 that caused encoding
in the raw format to unnecessarily fail if --suffix was not
used. For instance, the following command no longer reports
that --suffix must be used:
echo foo | xz --format=raw --lzma2 | wc -c
- Fixed an issue on MinGW-w64 builds that prevented reading
from or writing to non-terminal character devices like NUL.
* Added a new test.
5.4.5 (2023-11-31)
* liblzma:
- Use __attribute__((__no_sanitize_address__)) to avoid address
sanitization with CRC64 CLMUL. It uses 16-byte-aligned reads
which can extend past the bounds of the input buffer and
inherently trigger address sanitization errors. This isn't
a bug.
- Fixed an assertion failure that could be triggered by a large
unpadded_size argument. It was verified that there was no
other bug than the assertion failure.
- Fixed a bug that prevented building with Windows Vista
threading when __attribute__((__constructor__)) is not
supported.
* xz now properly handles special files such as "con" or "nul" on
Windows. Before this fix, the following wrote "foo" to the
console and deleted the input file "con_xz":
echo foo | xz > con_xz
xz --suffix=_xz --decompress con_xz
* Build systems:
- Allow builds with Windows win95 threading and small mode when
__attribute__((__constructor__)) is supported.
- Added a new line to liblzma.pc for MSYS2 (Windows):
Cflags.private: -DLZMA_API_STATIC
When compiling code that will link against static liblzma,
the LZMA_API_STATIC macro needs to be defined on Windows.
- CMake specific changes:
* Fixed a bug that allowed CLOCK_MONOTONIC to be used even
if the check for it failed.
* Fixed a bug where configuring CMake multiple times
resulted in HAVE_CLOCK_GETTIME and HAVE_CLOCK_MONOTONIC
not being set.
* Fixed the build with MinGW-w64-based Clang/LLVM 17.
llvm-windres now has more accurate GNU windres emulation
so the GNU windres workaround from 5.4.1 is needed with
llvm-windres version 17 too.
* The import library on Windows is now properly named
"liblzma.dll.a" instead of "libliblzma.dll.a"
* Fixed a bug causing the Ninja Generator to fail on
UNIX-like systems. This bug was introduced in 5.4.0.
* Added a new option to disable CLMUL CRC64.
* A module-definition (.def) file is now created when
building liblzma.dll with MinGW-w64.
* The pkg-config liblzma.pc file is now installed on all
builds except when using MSVC on Windows.
* Added large file support by default for platforms that
need it to handle files larger than 2 GiB. This includes
MinGW-w64, even 64-bit builds.
* Small fixes and improvements to the tests.
* Updated translations: Chinese (simplified) and Esperanto.
5.4.4 (2023-08-02)
* liblzma and xzdec can now build against WASI SDK when threading
support is disabled. xz and tests don't build yet.
* CMake:
- Fixed a bug preventing other projects from including liblzma
multiple times using find_package().
- Don't create broken symlinks in Cygwin and MSYS2 unless
supported by the environment. This prevented building for the
default MSYS2 environment. The problem was introduced in
xz 5.4.0.
* Documentation:
- Small improvements to man pages.
- Small improvements and typo fixes for liblzma API
documentation.
* Tests:
- Added a new section to INSTALL to describe basic test usage
and address recent questions about building the tests when
cross compiling.
- Small fixes and improvements to the tests.
* Translations:
- Fixed a mistake that caused one of the error messages to not
be translated. This only affected versions 5.4.2 and 5.4.3.
- Updated the Chinese (simplified), Croatian, Esperanto, German,
Korean, Polish, Romanian, Spanish, Swedish, Ukrainian, and
Vietnamese translations.
- Updated the German, Korean, Romanian, and Ukrainian man page
translations.
5.4.3 (2023-05-04)
* All fixes from 5.2.12
* Features in the CMake build can now be disabled as CMake cache
variables, similar to the Autotools build.
* Minor update to the Croatian translation.
5.4.2 (2023-03-18)
* All fixes from 5.2.11 that were not included in 5.4.1.
* If xz is built with support for the Capsicum sandbox but running
in an environment that doesn't support Capsicum, xz now runs
normally without sandboxing instead of exiting with an error.
* liblzma:
- Documentation was updated to improve the style, consistency,
and completeness of the liblzma API headers.
- The Doxygen-generated HTML documentation for the liblzma API
header files is now included in the source release and is
installed as part of "make install". All JavaScript is
removed to simplify license compliance and to reduce the
install size.
- Fixed a minor bug in lzma_str_from_filters() that produced
too many filters in the output string instead of reporting
an error if the input array had more than four filters. This
bug did not affect xz.
* Build systems:
- autogen.sh now invokes the doxygen tool via the new wrapper
script doxygen/update-doxygen, unless the command line option
--no-doxygen is used.
- Added microlzma_encoder.c and microlzma_decoder.c to the
VS project files for Windows and to the CMake build. These
should have been included in 5.3.2alpha.
* Tests:
- Added a test to the CMake build that was forgotten in the
previous release.
- Added and refactored a few tests.
* Translations:
- Updated the Brazilian Portuguese translation.
- Added Brazilian Portuguese man page translation.
5.4.1 (2023-01-11)
* liblzma:
- Fixed the return value of lzma_microlzma_encoder() if the
LZMA options lc/lp/pb are invalid. Invalid lc/lp/pb options
made the function return LZMA_STREAM_END without encoding
anything instead of returning LZMA_OPTIONS_ERROR.
- Windows / Visual Studio: Workaround a possible compiler bug
when targeting 32-bit x86 and compiling the CLMUL version of
the CRC64 code. The CLMUL code isn't enabled by the Windows
project files but it is in the CMake-based builds.
* Build systems:
- Windows-specific CMake changes:
* Don't try to enable CLMUL CRC64 code if _mm_set_epi64x()
isn't available. This fixes CMake-based build with Visual
Studio 2013.
* Created a workaround for a build failure with windres
from GNU binutils. It is used only when the C compiler
is GCC (not Clang). The workaround is incompatible
with llvm-windres, resulting in "XZx20Utils" instead
of "XZ Utils" in the resource file, but without the
workaround llvm-windres works correctly. See the
comment in CMakeLists.txt for details.
* Included the resource files in the xz and xzdec build
rules. Building the command line tools is still
experimental but possible with MinGW-w64.
- Visual Studio: Added stream_decoder_mt.c to the project
files. Now the threaded decompressor lzma_stream_decoder_mt()
gets built. CMake-based build wasn't affected.
- Updated windows/INSTALL-MSVC.txt to mention that CMake-based
build is now the preferred method with Visual Studio. The
project files will probably be removed after 5.4.x releases.
- Changes to #defines in config.h:
* HAVE_DECL_CLOCK_MONOTONIC was replaced by
HAVE_CLOCK_MONOTONIC. The old macro was always defined
in configure-generated config.h to either 0 or 1. The
new macro is defined (to 1) only if the declaration of
CLOCK_MONOTONIC is available. This matches the way most
other config.h macros work and makes things simpler with
other build systems.
* HAVE_DECL_PROGRAM_INVOCATION_NAME was replaced by
HAVE_PROGRAM_INVOCATION_NAME for the same reason.
* Tests:
- Fixed test script compatibility with ancient /bin/sh
versions. Now the five test_compress_* tests should
no longer fail on Solaris 10.
- Added and refactored a few tests.
* Translations:
- Updated the Catalan and Esperanto translations.
- Added Korean and Ukrainian man page translations.
5.4.0 (2022-12-13)
This bumps the minor version of liblzma because new features were
added. The API and ABI are still backward compatible with liblzma
5.2.x and 5.0.x.
Since 5.3.5beta:
* All fixes from 5.2.10.
* The ARM64 filter is now stable. The xz option is now --arm64.
Decompression requires XZ Utils 5.4.0. In the future the ARM64
filter will be supported by XZ for Java, XZ Embedded (including
the version in Linux), LZMA SDK, and 7-Zip.
* Translations:
- Updated Catalan, Croatian, German, Romanian, and Turkish
translations.
- Updated German man page translations.
- Added Romanian man page translations.
Summary of new features added in the 5.3.x development releases:
* liblzma:
- Added threaded .xz decompressor lzma_stream_decoder_mt().
It can use multiple threads with .xz files that have multiple
Blocks with size information in Block Headers. The threaded
encoder in xz has always created such files.
Single-threaded encoder cannot store the size information in
Block Headers even if one used LZMA_FULL_FLUSH to create
multiple Blocks, so this threaded decoder cannot use multiple
threads with such files.
If there are multiple Streams (concatenated .xz files), one
Stream will be decompressed completely before starting the
next Stream.
- A new decoder flag LZMA_FAIL_FAST was added. It makes the
threaded decompressor report errors soon instead of first
flushing all pending data before the error location.
- New Filter IDs:
* LZMA_FILTER_ARM64 is for ARM64 binaries.
* LZMA_FILTER_LZMA1EXT is for raw LZMA1 streams that don't
necessarily use the end marker.
- Added lzma_str_to_filters(), lzma_str_from_filters(), and
lzma_str_list_filters() to convert a preset or a filter chain
string to a lzma_filter[] and vice versa. These should make
it easier to write applications that allow users to specify
custom compression options.
- Added lzma_filters_free() which can be convenient for freeing
the filter options in a filter chain (an array of lzma_filter
structures).
- lzma_file_info_decoder() to makes it a little easier to get
the Index field from .xz files. This helps in getting the
uncompressed file size but an easy-to-use random access
API is still missing which has existed in XZ for Java for
a long time.
- Added lzma_microlzma_encoder() and lzma_microlzma_decoder().
It is used by erofs-utils and may be used by others too.
The MicroLZMA format is a raw LZMA stream (without end marker)
whose first byte (always 0x00) has been replaced with
bitwise-negation of the LZMA properties (lc/lp/pb). It was
created for use in EROFS but may be used in other contexts
as well where it is important to avoid wasting bytes for
stream headers or footers. The format is also supported by
XZ Embedded (the XZ Embedded version in Linux got MicroLZMA
support in Linux 5.16).
The MicroLZMA encoder API in liblzma can compress into a
fixed-sized output buffer so that as much data is compressed
as can be fit into the buffer while still creating a valid
MicroLZMA stream. This is needed for EROFS.
- Added lzma_lzip_decoder() to decompress the .lz (lzip) file
format version 0 and the original unextended version 1 files.
Also lzma_auto_decoder() supports .lz files.
- lzma_filters_update() can now be used with the multi-threaded
encoder (lzma_stream_encoder_mt()) to change the filter chain
after LZMA_FULL_BARRIER or LZMA_FULL_FLUSH.
- In lzma_options_lzma, allow nice_len = 2 and 3 with the match
finders that require at least 3 or 4. Now it is internally
rounded up if needed.
- CLMUL-based CRC64 on x86-64 and E2K with runtime processor
detection. On 32-bit x86 it currently isn't available unless
--disable-assembler is used which can make the non-CLMUL
CRC64 slower; this might be fixed in the future.
- Building with --disable-threads --enable-small
is now thread-safe if the compiler supports
__attribute__((__constructor__)).
* xz:
- Using -T0 (--threads=0) will now use multi-threaded encoder
even on a single-core system. This is to ensure that output
from the same xz binary is identical on both single-core and
multi-core systems.
- --threads=+1 or -T+1 is now a way to put xz into
multi-threaded mode while using only one worker thread.
The + is ignored if the number is not 1.
- A default soft memory usage limit is now used for compression
when -T0 is used and no explicit limit has been specified.
This soft limit is used to restrict the number of threads
but if the limit is exceeded with even one thread then xz
will continue with one thread using the multi-threaded
encoder and this limit is ignored. If the number of threads
is specified manually then no default limit will be used;
this affects only -T0.
This change helps on systems that have very many cores and
using all of them for xz makes no sense. Previously xz -T0
could run out of memory on such systems because it attempted
to reserve memory for too many threads.
This also helps with 32-bit builds which don't have a large
amount of address space that would be required for many
threads. The default soft limit for -T0 is at most 1400 MiB
on all 32-bit platforms.
- Previously a low value in --memlimit-compress wouldn't cause
xz to switch from multi-threaded mode to single-threaded mode
if the limit cannot otherwise be met; xz failed instead. Now
xz can switch to single-threaded mode and then, if needed,
scale down the LZMA2 dictionary size too just like it already
did when it was started in single-threaded mode.
- The option --no-adjust no longer prevents xz from scaling down
the number of threads as that doesn't affect the compressed
output (only performance). Now --no-adjust only prevents
adjustments that affect compressed output, that is, with
--no-adjust xz won't switch from multi-threaded mode to
single-threaded mode and won't scale down the LZMA2
dictionary size.
- Added a new option --memlimit-mt-decompress=LIMIT. This is
used to limit the number of decompressor threads (possibly
falling back to single-threaded mode) but it will never make
xz refuse to decompress a file. This has a system-specific
default value because without any limit xz could end up
allocating memory for the whole compressed input file, the
whole uncompressed output file, multiple thread-specific
decompressor instances and so on. Basically xz could
attempt to use an insane amount of memory even with fairly
common files. The system-specific default value is currently
the same as the one used for compression with -T0.
The new option works together with the existing option
--memlimit-decompress=LIMIT. The old option sets a hard limit
that must not be exceeded (xz will refuse to decompress)
while the new option only restricts the number of threads.
If the limit set with --memlimit-mt-decompress is greater
than the limit set with --memlimit-compress, then the latter
value is used also for --memlimit-mt-decompress.
- Added new information to the output of xz --info-memory and
new fields to the output of xz --robot --info-memory.
- In --lzma2=nice=NUMBER allow 2 and 3 with all match finders
now that liblzma handles it.
- Don't mention endianness for ARM and ARM-Thumb filters in
--long-help. The filters only work for little endian
instruction encoding but modern ARM processors using
big endian data access still use little endian
instruction encoding. So the help text was misleading.
In contrast, the PowerPC filter is only for big endian
32/64-bit PowerPC code. Little endian PowerPC would need
a separate filter.
- Added decompression support for the .lz (lzip) file format
version 0 and the original unextended version 1. It is
autodetected by default. See also the option --format on
the xz man page.
- Sandboxing enabled by default:
* Capsicum (FreeBSD)
* pledge(2) (OpenBSD)
* Scripts now support the .lz format using xz.
* A few new tests were added.
* The liblzma-specific tests are now supported in CMake-based
builds too ("make test").
5.3.5beta (2022-12-01)
* All fixes from 5.2.9.
* liblzma:
- Added new LZMA_FILTER_LZMA1EXT for raw encoder and decoder to
handle raw LZMA1 streams that don't have end of payload marker
(EOPM) alias end of stream (EOS) marker. It can be used in
filter chains, for example, with the x86 BCJ filter.
- Added lzma_str_to_filters(), lzma_str_from_filters(), and
lzma_str_list_filters() to make it easier for applications
to get custom compression options from a user and convert
it to an array of lzma_filter structures.
- Added lzma_filters_free().
- lzma_filters_update() can now be used with the multi-threaded
encoder (lzma_stream_encoder_mt()) to change the filter chain
after LZMA_FULL_BARRIER or LZMA_FULL_FLUSH.
- In lzma_options_lzma, allow nice_len = 2 and 3 with the match
finders that require at least 3 or 4. Now it is internally
rounded up if needed.
- ARM64 filter was modified. It is still experimental.
- Fixed LTO build with Clang if -fgnuc-version=10 or similar
was used to make Clang look like GCC >= 10. Now it uses
__has_attribute(__symver__) which should be reliable.
* xz:
- --threads=+1 or -T+1 is now a way to put xz into multi-threaded
mode while using only one worker thread.
- In --lzma2=nice=NUMBER allow 2 and 3 with all match finders
now that liblzma handles it.
* Updated translations: Chinese (simplified), Korean, and Turkish.
5.3.4alpha (2022-11-15)
* All fixes from 5.2.7 and 5.2.8.
* liblzma:
- Minor improvements to the threaded decoder.
- Added CRC64 implementation that uses SSSE3, SSE4.1, and CLMUL
instructions on 32/64-bit x86 and E2K. On 32-bit x86 it's
not enabled unless --disable-assembler is used but then
the non-CLMUL code might be slower. Processor support is
detected at runtime so this is built by default on x86-64
and E2K. On these platforms, if compiler flags indicate
unconditional CLMUL support (-msse4.1 -mpclmul) then the
generic version is not built, making liblzma 8-9 KiB smaller
compared to having both versions included.
With extremely compressible files this can make decompression
up to twice as fast but with typical files 5 % improvement
is a more realistic expectation.
The CLMUL version is slower than the generic version with
tiny inputs (especially at 1-8 bytes per call, but up to
16 bytes). In normal use in xz this doesn't matter at all.
- Added an experimental ARM64 filter. This is *not* the final
version! Files created with this experimental version won't
be supported in the future versions! The filter design is
a compromise where improving one use case makes some other
cases worse.
- Added decompression support for the .lz (lzip) file format
version 0 and the original unextended version 1. See the
API docs of lzma_lzip_decoder() for details. Also
lzma_auto_decoder() supports .lz files.
- Building with --disable-threads --enable-small
is now thread-safe if the compiler supports
__attribute__((__constructor__))
* xz:
- Added support for OpenBSD's pledge(2) as a sandboxing method.
- Don't mention endianness for ARM and ARM-Thumb filters in
--long-help. The filters only work for little endian
instruction encoding but modern ARM processors using
big endian data access still use little endian
instruction encoding. So the help text was misleading.
In contrast, the PowerPC filter is only for big endian
32/64-bit PowerPC code. Little endian PowerPC would need
a separate filter.
- Added --experimental-arm64. This will be renamed once the
filter is finished. Files created with this experimental
filter will not be supported in the future!
- Added new fields to the output of xz --robot --info-memory.
- Added decompression support for the .lz (lzip) file format
version 0 and the original unextended version 1. It is
autodetected by default. See also the option --format on
the xz man page.
* Scripts now support the .lz format using xz.
* Build systems:
- New #defines in config.h: HAVE_ENCODER_ARM64,
HAVE_DECODER_ARM64, HAVE_LZIP_DECODER, HAVE_CPUID_H,
HAVE_FUNC_ATTRIBUTE_CONSTRUCTOR, HAVE_USABLE_CLMUL
- New configure options: --disable-clmul-crc,
--disable-microlzma, --disable-lzip-decoder, and
'pledge' is now an option in --enable-sandbox (but
it's autodetected by default anyway).
- INSTALL was updated to document the new configure options.
- PACKAGERS now lists also --disable-microlzma and
--disable-lzip-decoder as configure options that must
not be used in builds for non-embedded use.
* Tests:
- Fix some of the tests so that they skip instead of fail if
certain features have been disabled with configure options.
It's still not perfect.
- Other improvements to tests.
* Updated translations: Croatian, Finnish, Hungarian, Polish,
Romanian, Spanish, Swedish, and Ukrainian.
5.3.3alpha (2022-08-22)
* All fixes from 5.2.6.
* liblzma:
- Fixed 32-bit build.
- Added threaded .xz decompressor lzma_stream_decoder_mt().
It can use multiple threads with .xz files that have multiple
Blocks with size information in Block Headers. The threaded
encoder in xz has always created such files.
Single-threaded encoder cannot store the size information in
Block Headers even if one used LZMA_FULL_FLUSH to create
multiple Blocks, so this threaded decoder cannot use multiple
threads with such files.
If there are multiple Streams (concatenated .xz files), one
Stream will be decompressed completely before starting the
next Stream.
- A new decoder flag LZMA_FAIL_FAST was added. It makes the
threaded decompressor report errors soon instead of first
flushing all pending data before the error location.
* xz:
- Using -T0 (--threads=0) will now use multi-threaded encoder
even on a single-core system. This is to ensure that output
from the same xz binary is identical on both single-core and
multi-core systems.
- A default soft memory usage limit is now used for compression
when -T0 is used and no explicit limit has been specified.
This soft limit is used to restrict the number of threads
but if the limit is exceeded with even one thread then xz
will continue with one thread using the multi-threaded
encoder and this limit is ignored. If the number of threads
is specified manually then no default limit will be used;
this affects only -T0.
This change helps on systems that have very many cores and
using all of them for xz makes no sense. Previously xz -T0
could run out of memory on such systems because it attempted
to reserve memory for too many threads.
This also helps with 32-bit builds which don't have a large
amount of address space that would be required for many
threads. The default limit is 1400 MiB on all 32-bit
platforms with -T0.
Now xz -T0 should just work. It might use too few threads
in some cases but at least it shouldn't easily run out of
memory. It's possible that this will be tweaked before 5.4.0.
- Changes to --memlimit-compress and --no-adjust:
In single-threaded mode, --memlimit-compress can make xz
scale down the LZMA2 dictionary size to meet the memory usage
limit. This obviously affects the compressed output. However,
if xz was in threaded mode, --memlimit-compress could make xz
reduce the number of threads but it wouldn't make xz switch
from multi-threaded mode to single-threaded mode or scale
down the LZMA2 dictionary size. This seemed illogical.
Now --memlimit-compress can make xz switch to single-threaded
mode if one thread in multi-threaded mode uses too much
memory. If memory usage is still too high, then the LZMA2
dictionary size can be scaled down too.
The option --no-adjust was also changed so that it no longer
prevents xz from scaling down the number of threads as that
doesn't affect compressed output (only performance). After
this commit --no-adjust only prevents adjustments that affect
compressed output, that is, with --no-adjust xz won't switch
from multithreaded mode to single-threaded mode and won't
scale down the LZMA2 dictionary size.
- Added a new option --memlimit-mt-decompress=LIMIT. This is
used to limit the number of decompressor threads (possibly
falling back to single-threaded mode) but it will never make
xz refuse to decompress a file. This has a system-specific
default value because without any limit xz could end up
allocating memory for the whole compressed input file, the
whole uncompressed output file, multiple thread-specific
decompressor instances and so on. Basically xz could
attempt to use an insane amount of memory even with fairly
common files.
The new option works together with the existing option
--memlimit-decompress=LIMIT. The old option sets a hard limit
that must not be exceeded (xz will refuse to decompress)
while the new option only restricts the number of threads.
If the limit set with --memlimit-mt-decompress is greater
than the limit set with --memlimit-compress, then the latter
value is used also for --memlimit-mt-decompress.
* Tests:
- Added a few more tests.
- Added tests/code_coverage.sh to create a code coverage report
of the tests.
* Build systems:
- Automake's parallel test harness is now used to make tests
finish faster.
- Added the CMake files to the distribution tarball. These were
supposed to be in 5.2.5 already.
- Added liblzma tests to the CMake build.
- Windows: Fix building of liblzma.dll with the included
Visual Studio project files.
5.3.2alpha (2021-10-28)
This release was made on short notice so that recent erofs-utils can
be built with LZMA support without needing a snapshot from xz.git.
Thus many pending things were not included, not even updated
translations (which would need to be updated for the new --list
strings anyway).
* All fixes from 5.2.5.
* xz:
- When copying metadata from the source file to the destination
file, don't try to set the group (GID) if it is already set
correctly. This avoids a failure on OpenBSD (and possibly on
a few other OSes) where files may get created so that their
group doesn't belong to the user, and fchown(2) can fail even
if it needs to do nothing.
- The --keep option now accepts symlinks, hardlinks, and
setuid, setgid, and sticky files. Previously this required
using --force.
- Split the long strings used in --list and --info-memory modes
to make them much easier for translators.
- If built with sandbox support and enabling the sandbox fails,
xz will now immediately exit with exit status of 1. Previously
it would only display a warning if -vv was used.
- Cap --memlimit-compress to 2000 MiB on MIPS32 because on
MIPS32 userspace processes are limited to 2 GiB of address
space.
* liblzma:
- Added lzma_microlzma_encoder() and lzma_microlzma_decoder().
The API is in lzma/container.h.
The MicroLZMA format is a raw LZMA stream (without end marker)
whose first byte (always 0x00) has been replaced with
bitwise-negation of the LZMA properties (lc/lp/pb). It was
created for use in EROFS but may be used in other contexts
as well where it is important to avoid wasting bytes for
stream headers or footers. The format is also supported by
XZ Embedded.
The MicroLZMA encoder API in liblzma can compress into a
fixed-sized output buffer so that as much data is compressed
as can be fit into the buffer while still creating a valid
MicroLZMA stream. This is needed for EROFS.
- Added fuzzing support.
- Support Intel Control-flow Enforcement Technology (CET) in
32-bit x86 assembly files.
- Visual Studio: Use non-standard _MSVC_LANG to detect C++
standard version in the lzma.h API header. It's used to
detect when "noexcept" can be used.
* Scripts:
- Fix exit status of xzdiff/xzcmp. Exit status could be 2 when
the correct value is 1.
- Fix exit status of xzgrep.
- Detect corrupt .bz2 files in xzgrep.
- Add zstd support to xzgrep and xzdiff/xzcmp.
- Fix less(1) version detection in xzless. It failed if the
version number from "less -V" contained a dot.
* Fix typos and technical issues in man pages.
* Build systems:
- Windows: Fix building of resource files when config.h isn't
used. CMake + Visual Studio can now build liblzma.dll.
- Various fixes to the CMake support. It might still need a few
more fixes even for liblzma-only builds.
5.3.1alpha (2018-04-29)
* All fixes from 5.2.4.
* Add lzma_file_info_decoder() into liblzma and use it in xz to
implement the --list feature.
* Capsicum sandbox support is enabled by default where available
(FreeBSD >= 10).
5.2.12 (2023-05-04)
* Fixed a build system bug that prevented building liblzma as a
shared library when configured with --disable-threads. This bug
affected releases 5.2.6 to 5.2.11 and 5.4.0 to 5.4.2.
* Include <intrin.h> for Windows intrinsic functions where they are
needed. This fixed a bug that prevented building liblzma using
clang-cl on Windows.
* Minor update to the Croatian translation. The small change
applies to a string in both 5.2 and 5.4 branches.
5.2.11 (2023-03-18)
* Removed all possible cases of null pointer + 0. It is undefined
behavior in C99 and C17. This was detected by a sanitizer and had
not caused any known issues.
* Build systems:
- Added a workaround for building with GCC on MicroBlaze Linux.
GCC 12 on MicroBlaze doesn't support the __symver__ attribute
even though __has_attribute(__symver__) returns true. The
build is now done without the extra RHEL/CentOS 7 symbols
that were added in XZ Utils 5.2.7. The workaround only
applies to the Autotools build (not CMake).
- CMake: Ensure that the C compiler language is set to C99 or
a newer standard.
- CMake changes from XZ Utils 5.4.1:
* Added a workaround for a build failure with
windres from GNU binutils.
* Included the Windows resource files in the xz
and xzdec build rules.
5.2.10 (2022-12-13)
* xz: Don't modify argv[] when parsing the --memlimit* and
--block-list command line options. This fixes confusing
arguments in process listing (like "ps auxf").
* GNU/Linux only: Use __has_attribute(__symver__) to detect if
that attribute is supported. This fixes build on Mandriva where
Clang is patched to define __GNUC__ to 11 by default (instead
of 4 as used by Clang upstream).
5.2.9 (2022-11-30)
* liblzma:
- Fixed an infinite loop in LZMA encoder initialization
if dict_size >= 2 GiB. (The encoder only supports up
to 1536 MiB.)
- Fixed two cases of invalid free() that can happen if
a tiny allocation fails in encoder re-initialization
or in lzma_filters_update(). These bugs had some
similarities with the bug fixed in 5.2.7.
- Fixed lzma_block_encoder() not allowing the use of
LZMA_SYNC_FLUSH with lzma_code() even though it was
documented to be supported. The sync-flush code in
the Block encoder was already used internally via
lzma_stream_encoder(), so this was just a missing flag
in the lzma_block_encoder() API function.
- GNU/Linux only: Don't put symbol versions into static
liblzma as it breaks things in some cases (and even if
it didn't break anything, symbol versions in static
libraries are useless anyway). The downside of the fix
is that if the configure options --with-pic or --without-pic
are used then it's not possible to build both shared and
static liblzma at the same time on GNU/Linux anymore;
with those options --disable-static or --disable-shared
must be used too.
* New email address for bug reports is <xz@tukaani.org> which
forwards messages to Lasse Collin and Jia Tan.
5.2.8 (2022-11-13)
* xz:
- If xz cannot remove an input file when it should, this
is now treated as a warning (exit status 2) instead of
an error (exit status 1). This matches GNU gzip and it
is more logical as at that point the output file has
already been successfully closed.
- Fix handling of .xz files with an unsupported check type.
Previously such printed a warning message but then xz
behaved as if an error had occurred (didn't decompress,
exit status 1). Now a warning is printed, decompression
is done anyway, and exit status is 2. This used to work
slightly before 5.0.0. In practice this bug matters only
if xz has been built with some check types disabled. As
instructed in PACKAGERS, such builds should be done in
special situations only.
- Fix "xz -dc --single-stream tests/files/good-0-empty.xz"
which failed with "Internal error (bug)". That is,
--single-stream was broken if the first .xz stream in
the input file didn't contain any uncompressed data.
- Fix displaying file sizes in the progress indicator when
working in passthru mode and there are multiple input files.
Just like "gzip -cdf", "xz -cdf" works like "cat" when the
input file isn't a supported compressed file format. In
this case the file size counters weren't reset between
files so with multiple input files the progress indicator
displayed an incorrect (too large) value.
* liblzma:
- API docs in lzma/container.h:
* Update the list of decoder flags in the decoder
function docs.
* Explain LZMA_CONCATENATED behavior with .lzma files
in lzma_auto_decoder() docs.
- OpenBSD: Use HW_NCPUONLINE to detect the number of
available hardware threads in lzma_physmem().
- Fix use of wrong macro to detect x86 SSE2 support.
__SSE2_MATH__ was used with GCC/Clang but the correct
one is __SSE2__. The first one means that SSE2 is used
for floating point math which is irrelevant here.
The affected SSE2 code isn't used on x86-64 so this affects
only 32-bit x86 builds that use -msse2 without -mfpmath=sse
(there is no runtime detection for SSE2). It improves LZMA
compression speed (not decompression).
- Fix the build with Intel C compiler 2021 (ICC, not ICX)
on Linux. It defines __GNUC__ to 10 but doesn't support
the __symver__ attribute introduced in GCC 10.
* Scripts: Ignore warnings from xz by using --quiet --no-warn.
This is needed if the input .xz files use an unsupported
check type.
* Translations:
- Updated Croatian and Turkish translations.
- One new translations wasn't included because it needed
technical fixes. It will be in upcoming 5.4.0. No new
translations will be added to the 5.2.x branch anymore.
- Renamed the French man page translation file from
fr_FR.po to fr.po and thus also its install directory
(like /usr/share/man/fr_FR -> .../fr).
- Man page translations for upcoming 5.4.0 are now handled
in the Translation Project.
* Update doc/faq.txt a little so it's less out-of-date.
5.2.7 (2022-09-30)
* liblzma:
- Made lzma_filters_copy() to never modify the destination
array if an error occurs. lzma_stream_encoder() and
lzma_stream_encoder_mt() already assumed this. Before this
change, if a tiny memory allocation in lzma_filters_copy()
failed it would lead to a crash (invalid free() or invalid
memory reads) in the cleanup paths of these two encoder
initialization functions.
- Added missing integer overflow check to lzma_index_append().
This affects xz --list and other applications that decode
the Index field from .xz files using lzma_index_decoder().
Normal decompression of .xz files doesn't call this code
and thus most applications using liblzma aren't affected
by this bug.
- Single-threaded .xz decoder (lzma_stream_decoder()): If
lzma_code() returns LZMA_MEMLIMIT_ERROR it is now possible
to use lzma_memlimit_set() to increase the limit and continue
decoding. This was supposed to work from the beginning
but there was a bug. With other decoders (.lzma or
threaded .xz decoder) this already worked correctly.
- Fixed accumulation of integrity check type statistics in
lzma_index_cat(). This bug made lzma_index_checks() return
only the type of the integrity check of the last Stream
when multiple lzma_indexes were concatenated. Most
applications don't use these APIs but in xz it made
xz --list not list all check types from concatenated .xz
files. In xz --list --verbose only the per-file "Check:"
lines were affected and in xz --robot --list only the "file"
line was affected.
- Added ABI compatibility with executables that were linked
against liblzma in RHEL/CentOS 7 or other liblzma builds
that had copied the problematic patch from RHEL/CentOS 7
(xz-5.2.2-compat-libs.patch). For the details, see the
comment at the top of src/liblzma/validate_map.sh.
WARNING: This uses __symver__ attribute with GCC >= 10.
In other cases the traditional __asm__(".symver ...")
is used. Using link-time optimization (LTO, -flto) with
GCC versions older than 10 can silently result in
broken liblzma.so.5 (incorrect symbol versions)! If you
want to use -flto with GCC, you must use GCC >= 10.
LTO with Clang seems to work even with the traditional
__asm__(".symver ...") method.
* xzgrep: Fixed compatibility with old shells that break if
comments inside command substitutions have apostrophes (').
This problem was introduced in 5.2.6.
* Build systems:
- New #define in config.h: HAVE_SYMBOL_VERSIONS_LINUX
- Windows: Fixed liblzma.dll build with Visual Studio project
files. It broke in 5.2.6 due to a change that was made to
improve CMake support.
- Windows: Building liblzma with UNICODE defined should now
work.
- CMake files are now actually included in the release tarball.
They should have been in 5.2.5 already.
- Minor CMake fixes and improvements.
* Added a new translation: Turkish
5.2.6 (2022-08-12)
* xz:
- The --keep option now accepts symlinks, hardlinks, and
setuid, setgid, and sticky files. Previously this required
using --force.
- When copying metadata from the source file to the destination
file, don't try to set the group (GID) if it is already set
correctly. This avoids a failure on OpenBSD (and possibly on
a few other OSes) where files may get created so that their
group doesn't belong to the user, and fchown(2) can fail even
if it needs to do nothing.
- Cap --memlimit-compress to 2000 MiB instead of 4020 MiB on
MIPS32 because on MIPS32 userspace processes are limited
to 2 GiB of address space.
* liblzma:
- Fixed a missing error-check in the threaded encoder. If a
small memory allocation fails, a .xz file with an invalid
Index field would be created. Decompressing such a file would
produce the correct output but result in an error at the end.
Thus this is a "mild" data corruption bug. Note that while
a failed memory allocation can trigger the bug, it cannot
cause invalid memory access.
- The decoder for .lzma files now supports files that have
uncompressed size stored in the header and still use the
end of payload marker (end of stream marker) at the end
of the LZMA stream. Such files are rare but, according to
the documentation in LZMA SDK, they are valid.
doc/lzma-file-format.txt was updated too.
- Improved 32-bit x86 assembly files:
* Support Intel Control-flow Enforcement Technology (CET)
* Use non-executable stack on FreeBSD.
- Visual Studio: Use non-standard _MSVC_LANG to detect C++
standard version in the lzma.h API header. It's used to
detect when "noexcept" can be used.
* xzgrep:
- Fixed arbitrary command injection via a malicious filename
(CVE-2022-1271, ZDI-CAN-16587). A standalone patch for
this was released to the public on 2022-04-07. A slight
robustness improvement has been made since then and, if
using GNU or *BSD grep, a new faster method is now used
that doesn't use the old sed-based construct at all. This
also fixes bad output with GNU grep >= 3.5 (2020-09-27)
when xzgrepping binary files.
This vulnerability was discovered by:
cleemy desu wayo working with Trend Micro Zero Day Initiative
- Fixed detection of corrupt .bz2 files.
- Improved error handling to fix exit status in some situations
and to fix handling of signals: in some situations a signal
didn't make xzgrep exit when it clearly should have. It's
possible that the signal handling still isn't quite perfect
but hopefully it's good enough.
- Documented exit statuses on the man page.
- xzegrep and xzfgrep now use "grep -E" and "grep -F" instead
of the deprecated egrep and fgrep commands.
- Fixed parsing of the options -E, -F, -G, -P, and -X. The
problem occurred when multiple options were specified in
a single argument, for example,
echo foo | xzgrep -Fe foo
treated foo as a filename because -Fe wasn't correctly
split into -F -e.
- Added zstd support.
* xzdiff/xzcmp:
- Fixed wrong exit status. Exit status could be 2 when the
correct value is 1.
- Documented on the man page that exit status of 2 is used
for decompression errors.
- Added zstd support.
* xzless:
- Fix less(1) version detection. It failed if the version number
from "less -V" contained a dot.
* Translations:
- Added new translations: Catalan, Croatian, Esperanto,
Korean, Portuguese, Romanian, Serbian, Spanish, Swedish,
and Ukrainian
- Updated the Brazilian Portuguese translation.
- Added French man page translation. This and the existing
German translation aren't complete anymore because the
English man pages got a few updates and the translators
weren't reached so that they could update their work.
* Build systems:
- Windows: Fix building of resource files when config.h isn't
used. CMake + Visual Studio can now build liblzma.dll.
- Various fixes to the CMake support. Building static or shared
liblzma should work fine in most cases. In contrast, building
the command line tools with CMake is still clearly incomplete
and experimental and should be used for testing only.
5.2.5 (2020-03-17)
* liblzma:
- Fixed several C99/C11 conformance bugs. Now the code is clean
under gcc/clang -fsanitize=undefined. Some of these changes
might have a negative effect on performance with old GCC
versions or compilers other than GCC and Clang. The configure
option --enable-unsafe-type-punning can be used to (mostly)
restore the old behavior but it shouldn't normally be used.
- Improved API documentation of lzma_properties_decode().
- Added a very minor encoder speed optimization.
* xz:
- Fixed a crash in "xz -dcfv not_an_xz_file". All four options
were required to trigger it. The crash occurred in the
progress indicator code when xz was in passthru mode where
xz works like "cat".
- Fixed an integer overflow with 32-bit off_t. It could happen
when decompressing a file that has a long run of zero bytes
which xz would try to write as a sparse file. Since the build
system enables large file support by default, off_t is
normally 64-bit even on 32-bit systems.
- Fixes for --flush-timeout:
* Fix semi-busy-waiting.
* Avoid unneeded flushes when no new input has arrived
since the previous flush was completed.
- Added a special case for 32-bit xz: If --memlimit-compress is
used to specify a limit that exceeds 4020 MiB, the limit will
be set to 4020 MiB. The values "0" and "max" aren't affected
by this and neither is decompression. This hack can be
helpful when a 32-bit xz has access to 4 GiB address space
but the specified memlimit exceeds 4 GiB. This can happen
e.g. with some scripts.
- Capsicum sandbox is now enabled by default where available
(FreeBSD >= 10). The sandbox debug messages (xz -vv) were
removed since they seemed to be more annoying than useful.
- DOS build now requires DJGPP 2.05 instead of 2.04beta.
A workaround for a locale problem with DJGPP 2.05 was added.
* xzgrep and other scripts:
- Added a configure option --enable-path-for-scripts=PREFIX.
It is disabled by default except on Solaris where the default
is /usr/xpg4/bin. See INSTALL for details.
- Added a workaround for a POSIX shell detection problem on
Solaris.
* Build systems:
- Added preliminary build instructions for z/OS. See INSTALL
section 1.2.9.
- Experimental CMake support was added. It should work to build
static liblzma on a few operating systems. It may or may not
work to build shared liblzma. On some platforms it can build
xz and xzdec too but those are only for testing. See the
comment in the beginning of CMakeLists.txt for details.
- Visual Studio project files were updated.
WindowsTargetPlatformVersion was removed from VS2017 files
and set to "10.0" in the added VS2019 files. In the future
the VS project files will be removed when CMake support is
good enough.
- New #defines in config.h: HAVE___BUILTIN_ASSUME_ALIGNED,
HAVE___BUILTIN_BSWAPXX, and TUKLIB_USE_UNSAFE_TYPE_PUNNING.
- autogen.sh has a new optional dependency on po4a and a new
option --no-po4a to skip that step. This matters only if one
wants to remake the build files. po4a is used to update the
translated man pages but as long as the man pages haven't
been modified, there's nothing to update and one can use
--no-po4a to avoid the dependency on po4a.
* Translations:
- XZ Utils translations are now handled by the Translation
Project: https://translationproject.org/domain/xz.html
- All man pages are now included in German too.
- New xz translations: Brazilian Portuguese, Finnish,
Hungarian, Chinese (simplified), Chinese (traditional),
and Danish (partial translation)
- Updated xz translations: French, German, Italian, and Polish
- Unfortunately a few new xz translations weren't included due
to technical problems like too long lines in --help output or
misaligned column headings in tables. In the future, many of
these strings will be split and e.g. the table column
alignment will be handled in software. This should make the
strings easier to translate.
5.2.4 (2018-04-29)
* liblzma:
- Allow 0 as memory usage limit instead of returning
LZMA_PROG_ERROR. Now 0 is treated as if 1 byte was specified,
which effectively is the same as 0.
- Use "noexcept" keyword instead of "throw()" in the public
headers when a C++11 (or newer standard) compiler is used.
- Added a portability fix for recent Intel C Compilers.
- Microsoft Visual Studio build files have been moved under
windows/vs2013 and windows/vs2017.
* xz:
- Fix "xz --list --robot missing_or_bad_file.xz" which would
try to print an uninitialized string and thus produce garbage
output. Since the exit status is non-zero, most uses of such
a command won't try to interpret the garbage output.
- "xz --list foo.xz" could print "Internal error (bug)" in a
corner case where a specific memory usage limit had been set.
5.2.3 (2016-12-30)
* xz:
- Always close a file before trying to delete it to avoid
problems on some operating system and file system combinations.
- Fixed copying of file timestamps on Windows.
- Added experimental (disabled by default) sandbox support using
Capsicum (FreeBSD >= 10). See --enable-sandbox in INSTALL.
* C99/C11 conformance fixes to liblzma. The issues affected at least
some builds using link-time optimizations.
* Fixed bugs in the rarely-used function lzma_index_dup().
* Use of external SHA-256 code is now disabled by default.
It can still be enabled by passing --enable-external-sha256
to configure. The reasons to disable it by default (see INSTALL
for more details):
- Some OS-specific SHA-256 implementations conflict with
OpenSSL and cause problems in programs that link against both
liblzma and libcrypto. At least FreeBSD 10 and MINIX 3.3.0
are affected.
- The internal SHA-256 is faster than the SHA-256 code in
some operating systems.
* Changed CPU core count detection to use sched_getaffinity() on
GNU/Linux and GNU/kFreeBSD.
* Fixes to the build-system and xz to make xz buildable even when
encoders, decoders, or threading have been disabled from libilzma
using configure options. These fixes added two new #defines to
config.h: HAVE_ENCODERS and HAVE_DECODERS.
5.2.2 (2015-09-29)
* Fixed bugs in QNX-specific code.
* Omitted the use of pipe2() even if it is available to avoid
portability issues with some old Linux and glibc combinations.
* Updated German translation.
* Added project files to build static and shared liblzma (not the
whole XZ Utils) with Visual Studio 2013 update 2 or later.
* Documented that threaded decompression hasn't been implemented
yet. A 5.2.0 NEWS entry describing multi-threading support had
incorrectly said "decompression" when it should have said
"compression".
5.2.1 (2015-02-26)
* Fixed a compression-ratio regression in fast mode of LZMA1 and
LZMA2. The bug is present in 5.1.4beta and 5.2.0 releases.
* Fixed a portability problem in xz that affected at least OpenBSD.
* Fixed xzdiff to be compatible with FreeBSD's mktemp which differs
from most other mktemp implementations.
* Changed CPU core count detection to use cpuset_getaffinity() on
FreeBSD.
5.2.0 (2014-12-21)
Since 5.1.4beta:
* All fixes from 5.0.8
* liblzma: Fixed lzma_stream_encoder_mt_memusage() when a preset
was used.
* xzdiff: If mktemp isn't installed, mkdir will be used as
a fallback to create a temporary directory. Installing mktemp
is still recommended.
* Updated French, German, Italian, Polish, and Vietnamese
translations.
Summary of fixes and new features added in the 5.1.x development
releases:
* liblzma:
- Added support for multi-threaded compression. See the
lzma_mt structure, lzma_stream_encoder_mt(), and
lzma_stream_encoder_mt_memusage() in <lzma/container.h>,
lzma_get_progress() in <lzma/base.h>, and lzma_cputhreads()
in <lzma/hardware.h> for details.
- Made the uses of lzma_allocator const correct.
- Added lzma_block_uncomp_encode() to create uncompressed
.xz Blocks using LZMA2 uncompressed chunks.
- Added support for LZMA_IGNORE_CHECK.
- A few speed optimizations were made.
- Added support for symbol versioning. It is enabled by default
on GNU/Linux, other GNU-based systems, and FreeBSD.
- liblzma (not the whole XZ Utils) should now be buildable
with MSVC 2013 update 2 or later using windows/config.h.
* xz:
- Fixed a race condition in the signal handling. It was
possible that e.g. the first SIGINT didn't make xz exit
if reading or writing blocked and one had bad luck. The fix
is non-trivial, so as of writing it is unknown if it will be
backported to the v5.0 branch.
- Multi-threaded compression can be enabled with the
--threads (-T) option.
[Fixed: This originally said "decompression".]
- New command line options in xz: --single-stream,
--block-size=SIZE, --block-list=SIZES,
--flush-timeout=TIMEOUT, and --ignore-check.
- xz -lvv now shows the minimum xz version that is required to
decompress the file. Currently it is 5.0.0 for all supported
.xz files except files with empty LZMA2 streams require 5.0.2.
* xzdiff and xzgrep now support .lzo files if lzop is installed.
The .tzo suffix is also recognized as a shorthand for .tar.lzo.
5.1.4beta (2014-09-14)
* All fixes from 5.0.6
* liblzma: Fixed the use of presets in threaded encoder
initialization.
* xz --block-list and --block-size can now be used together
in single-threaded mode. Previously the combination only
worked in multi-threaded mode.
* Added support for LZMA_IGNORE_CHECK to liblzma and made it
available in xz as --ignore-check.
* liblzma speed optimizations:
- Initialization of a new LZMA1 or LZMA2 encoder has been
optimized. (The speed of reinitializing an already-allocated
encoder isn't affected.) This helps when compressing many
small buffers with lzma_stream_buffer_encode() and other
similar situations where an already-allocated encoder state
isn't reused. This speed-up is visible in xz too if one
compresses many small files one at a time instead running xz
once and giving all files as command-line arguments.
- Buffer comparisons are now much faster when unaligned access
is allowed (configured with --enable-unaligned-access). This
speeds up encoding significantly. There is arch-specific code
for 32-bit and 64-bit x86 (32-bit needs SSE2 for the best
results and there's no run-time CPU detection for now).
For other archs there is only generic code which probably
isn't as optimal as arch-specific solutions could be.
- A few speed optimizations were made to the SHA-256 code.
(Note that the builtin SHA-256 code isn't used on all
operating systems.)
* liblzma can now be built with MSVC 2013 update 2 or later
using windows/config.h.
* Vietnamese translation was added.
5.1.3alpha (2013-10-26)
* All fixes from 5.0.5
* liblzma:
- Fixed a deadlock in the threaded encoder.
- Made the uses of lzma_allocator const correct.
- Added lzma_block_uncomp_encode() to create uncompressed
.xz Blocks using LZMA2 uncompressed chunks.
- Added support for native threads on Windows and the ability
to detect the number of CPU cores.
* xz:
- Fixed a race condition in the signal handling. It was
possible that e.g. the first SIGINT didn't make xz exit
if reading or writing blocked and one had bad luck. The fix
is non-trivial, so as of writing it is unknown if it will be
backported to the v5.0 branch.
- Made the progress indicator work correctly in threaded mode.
- Threaded encoder now works together with --block-list=SIZES.
- Added preliminary support for --flush-timeout=TIMEOUT.
It can be useful for (somewhat) real-time streaming. For
now the decompression side has to be done with something
else than the xz tool due to how xz does buffering, but this
should be fixed.
5.1.2alpha (2012-07-04)
* All fixes from 5.0.3 and 5.0.4
* liblzma:
- Fixed a deadlock and an invalid free() in the threaded encoder.
- Added support for symbol versioning. It is enabled by default
on GNU/Linux, other GNU-based systems, and FreeBSD.
- Use SHA-256 implementation from the operating system if one is
available in libc, libmd, or libutil. liblzma won't use e.g.
OpenSSL or libgcrypt to avoid introducing new dependencies.
- Fixed liblzma.pc for static linking.
- Fixed a few portability bugs.
* xz --decompress --single-stream now fixes the input position after
successful decompression. Now the following works:
echo foo | xz > foo.xz
echo bar | xz >> foo.xz
( xz -dc --single-stream ; xz -dc --single-stream ) < foo.xz
Note that it doesn't work if the input is not seekable
or if there is Stream Padding between the concatenated
.xz Streams.
* xz -lvv now shows the minimum xz version that is required to
decompress the file. Currently it is 5.0.0 for all supported .xz
files except files with empty LZMA2 streams require 5.0.2.
* Added an *incomplete* implementation of --block-list=SIZES to xz.
It only works correctly in single-threaded mode and when
--block-size isn't used at the same time. --block-list allows
specifying the sizes of Blocks which can be useful e.g. when
creating files for random-access reading.
5.1.1alpha (2011-04-12)
* All fixes from 5.0.2
* liblzma fixes that will also be included in 5.0.3:
- A memory leak was fixed.
- lzma_stream_buffer_encode() no longer creates an empty .xz
Block if encoding an empty buffer. Such an empty Block with
LZMA2 data would trigger a bug in 5.0.1 and older (see the
first bullet point in 5.0.2 notes). When releasing 5.0.2,
I thought that no encoder creates this kind of files but
I was wrong.
- Validate function arguments better in a few functions. Most
importantly, specifying an unsupported integrity check to
lzma_stream_buffer_encode() no longer creates a corrupt .xz
file. Probably no application tries to do that, so this
shouldn't be a big problem in practice.
- Document that lzma_block_buffer_encode(),
lzma_easy_buffer_encode(), lzma_stream_encoder(), and
lzma_stream_buffer_encode() may return LZMA_UNSUPPORTED_CHECK.
- The return values of the _memusage() functions are now
documented better.
* Support for multithreaded compression was added using the simplest
method, which splits the input data into blocks and compresses
them independently. Other methods will be added in the future.
The current method has room for improvement, e.g. it is possible
to reduce the memory usage.
* Added the options --single-stream and --block-size=SIZE to xz.
* xzdiff and xzgrep now support .lzo files if lzop is installed.
The .tzo suffix is also recognized as a shorthand for .tar.lzo.
* Support for short 8.3 filenames under DOS was added to xz. It is
experimental and may change before it gets into a stable release.
5.0.8 (2014-12-21)
* Fixed an old bug in xzgrep that affected OpenBSD and probably
a few other operating systems too.
* Updated French and German translations.
* Added support for detecting the amount of RAM on AmigaOS/AROS.
* Minor build system updates.
5.0.7 (2014-09-20)
* Fix regressions introduced in 5.0.6:
- Fix building with non-GNU make.
- Fix invalid Libs.private value in liblzma.pc which broke
static linking against liblzma if the linker flags were
taken from pkg-config.
5.0.6 (2014-09-14)
* xzgrep now exits with status 0 if at least one file matched.
* A few minor portability and build system fixes
5.0.5 (2013-06-30)
* lzmadec and liblzma's lzma_alone_decoder(): Support decompressing
.lzma files that have less common settings in the headers
(dictionary size other than 2^n or 2^n + 2^(n-1), or uncompressed
size greater than 256 GiB). The limitations existed to avoid false
positives when detecting .lzma files. The lc + lp <= 4 limitation
still remains since liblzma's LZMA decoder has that limitation.
NOTE: xz's .lzma support or liblzma's lzma_auto_decoder() are NOT
affected by this change. They still consider uncommon .lzma headers
as not being in the .lzma format. Changing this would give way too
many false positives.
* xz:
- Interaction of preset and custom filter chain options was
made less illogical. This affects only certain less typical
uses cases so few people are expected to notice this change.
Now when a custom filter chain option (e.g. --lzma2) is
specified, all preset options (-0 ... -9, -e) earlier are on
the command line are completely forgotten. Similarly, when
a preset option is specified, all custom filter chain options
earlier on the command line are completely forgotten.
Example 1: "xz -9 --lzma2=preset=5 -e" is equivalent to "xz -e"
which is equivalent to "xz -6e". Earlier -e didn't put xz back
into preset mode and thus the example command was equivalent
to "xz --lzma2=preset=5".
Example 2: "xz -9e --lzma2=preset=5 -7" is equivalent to
"xz -7". Earlier a custom filter chain option didn't make
xz forget the -e option so the example was equivalent to
"xz -7e".
- Fixes and improvements to error handling.
- Various fixes to the man page.
* xzless: Fixed to work with "less" versions 448 and later.
* xzgrep: Made -h an alias for --no-filename.
* Include the previously missing debug/translation.bash which can
be useful for translators.
* Include a build script for Mac OS X. This has been in the Git
repository since 2010 but due to a mistake in Makefile.am the
script hasn't been included in a release tarball before.
5.0.4 (2012-06-22)
* liblzma:
- Fix lzma_index_init(). It could crash if memory allocation
failed.
- Fix the possibility of an incorrect LZMA_BUF_ERROR when a BCJ
filter is used and the application only provides exactly as
much output space as is the uncompressed size of the file.
- Fix a bug in doc/examples_old/xz_pipe_decompress.c. It didn't
check if the last call to lzma_code() really returned
LZMA_STREAM_END, which made the program think that truncated
files are valid.
- New example programs in doc/examples (old programs are now in
doc/examples_old). These have more comments and more detailed
error handling.
* Fix "xz -lvv foo.xz". It could crash on some corrupted files.
* Fix output of "xz --robot -lv" and "xz --robot -lvv" which
incorrectly printed the filename also in the "foo (x/x)" format.
* Fix exit status of "xzdiff foo.xz bar.xz".
* Fix exit status of "xzgrep foo binary_file".
* Fix portability to EBCDIC systems.
* Fix a configure issue on AIX with the XL C compiler. See INSTALL
for details.
* Update French, German, Italian, and Polish translations.
5.0.3 (2011-05-21)
* liblzma fixes:
- A memory leak was fixed.
- lzma_stream_buffer_encode() no longer creates an empty .xz
Block if encoding an empty buffer. Such an empty Block with
LZMA2 data would trigger a bug in 5.0.1 and older (see the
first bullet point in 5.0.2 notes). When releasing 5.0.2,
I thought that no encoder creates this kind of files but
I was wrong.
- Validate function arguments better in a few functions. Most
importantly, specifying an unsupported integrity check to
lzma_stream_buffer_encode() no longer creates a corrupt .xz
file. Probably no application tries to do that, so this
shouldn't be a big problem in practice.
- Document that lzma_block_buffer_encode(),
lzma_easy_buffer_encode(), lzma_stream_encoder(), and
lzma_stream_buffer_encode() may return LZMA_UNSUPPORTED_CHECK.
- The return values of the _memusage() functions are now
documented better.
* Fix command name detection in xzgrep. xzegrep and xzfgrep now
correctly use egrep and fgrep instead of grep.
* French translation was added.
5.0.2 (2011-04-01)
* LZMA2 decompressor now correctly accepts LZMA2 streams with no
uncompressed data. Previously it considered them corrupt. The
bug can affect applications that use raw LZMA2 streams. It is
very unlikely to affect .xz files because no compressor creates
.xz files with empty LZMA2 streams. (Empty .xz files are a
different thing than empty LZMA2 streams.)
* "xz --suffix=.foo filename.foo" now refuses to compress the
file due to it already having the suffix .foo. It was already
documented on the man page, but the code lacked the test.
* "xzgrep -l foo bar.xz" works now.
* Polish translation was added.
5.0.1 (2011-01-29)
* xz --force now (de)compresses files that have setuid, setgid,
or sticky bit set and files that have multiple hard links.
The man page had it documented this way already, but the code
had a bug.
* gzip and bzip2 support in xzdiff was fixed.
* Portability fixes
* Minor fix to Czech translation
5.0.0 (2010-10-23)
Only the most important changes compared to 4.999.9beta are listed
here. One change is especially important:
* The memory usage limit is now disabled by default. Some scripts
written before this change may have used --memory=max on xz command
line or in XZ_OPT. THESE USES OF --memory=max SHOULD BE REMOVED
NOW, because they interfere with user's ability to set the memory
usage limit himself. If user-specified limit causes problems to
your script, blame the user.
Other significant changes:
* Added support for XZ_DEFAULTS environment variable. This variable
allows users to set default options for xz, e.g. default memory
usage limit or default compression level. Scripts that use xz
must never set or unset XZ_DEFAULTS. Scripts should use XZ_OPT
instead if they need a way to pass options to xz via an
environment variable.
* The compression settings associated with the preset levels
-0 ... -9 have been changed. --extreme was changed a little too.
It is now less likely to make compression worse, but with some
files the new --extreme may compress slightly worse than the old
--extreme.
* If a preset level (-0 ... -9) is specified after a custom filter
chain options have been used (e.g. --lzma2), the custom filter
chain will be forgotten. Earlier the preset options were
completely ignored after custom filter chain options had been
seen.
* xz will create sparse files when decompressing if the uncompressed
data contains long sequences of binary zeros. This is done even
when writing to standard output that is connected to a regular
file and certain additional conditions are met to make it safe.
* Support for "xz --list" was added. Combine with --verbose or
--verbose --verbose (-vv) for detailed output.
* I had hoped that liblzma API would have been stable after
4.999.9beta, but there have been a couple of changes in the
advanced features, which don't affect most applications:
- Index handling code was revised. If you were using the old
API, you will get a compiler error (so it's easy to notice).
- A subtle but important change was made to the Block handling
API. lzma_block.version has to be initialized even for
lzma_block_header_decode(). Code that doesn't do it will work
for now, but might break in the future, which makes this API
change easy to miss.
* The major soname has been bumped to 5.0.0. liblzma API and ABI
are now stable, so the need to recompile programs linking against
liblzma shouldn't arise soon.