/////////////////////////////////////////////////////////////////////////////// // /// \file lz_decoder.c /// \brief LZ out window // // Copyright (C) 1999-2006 Igor Pavlov // Copyright (C) 2007 Lasse Collin // // This library is free software; you can redistribute it and/or // modify it under the terms of the GNU Lesser General Public // License as published by the Free Software Foundation; either // version 2.1 of the License, or (at your option) any later version. // // This library is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU // Lesser General Public License for more details. // /////////////////////////////////////////////////////////////////////////////// // liblzma supports multiple LZ77-based filters. The LZ part is shared // between these filters. The LZ code takes care of dictionary handling // and passing the data between filters in the chain. The filter-specific // part decodes from the input buffer to the dictionary. #include "lz_decoder.h" struct lzma_coder_s { /// Dictionary (history buffer) lzma_dict dict; /// The actual LZ-based decoder e.g. LZMA lzma_lz_decoder lz; /// Next filter in the chain, if any. Note that LZMA and LZMA2 are /// only allowed as the last filter, but the long-range filter in /// future can be in the middle of the chain. lzma_next_coder next; /// True if the next filter in the chain has returned LZMA_STREAM_END. bool next_finished; /// True if the LZ decoder (e.g. LZMA) has detected end of payload /// marker. This may become true before next_finished becomes true. bool this_finished; /// Temporary buffer needed when the LZ-based filter is not the last /// filter in the chain. The output of the next filter is first /// decoded into buffer[], which is then used as input for the actual /// LZ-based decoder. struct { size_t pos; size_t size; uint8_t buffer[LZMA_BUFFER_SIZE]; } temp; }; static lzma_ret decode_buffer(lzma_coder *coder, const uint8_t *restrict in, size_t *restrict in_pos, size_t in_size, uint8_t *restrict out, size_t *restrict out_pos, size_t out_size) { while (true) { // Wrap the dictionary if needed. if (coder->dict.pos == coder->dict.size) coder->dict.pos = 0; // Store the current dictionary position. It is needed to know // where to start copying to the out[] buffer. const size_t dict_start = coder->dict.pos; // Calculate how much we allow the process() function to // decode. It must not decode past the end of the dictionary // buffer, and we don't want it to decode more than is // actually needed to fill the out[] buffer. coder->dict.limit = coder->dict.pos + MIN(out_size - *out_pos, coder->dict.size - coder->dict.pos); // Call the process() function to do the actual decoding. const lzma_ret ret = coder->lz.code( coder->lz.coder, &coder->dict, in, in_pos, in_size); // Copy the decoded data from the dictionary to the out[] // buffer. const size_t copy_size = coder->dict.pos - dict_start; assert(copy_size <= out_size - *out_pos); memcpy(out + *out_pos, coder->dict.buf + dict_start, copy_size); *out_pos += copy_size; // Return if everything got decoded or an error occurred, or // if there's no more data to decode. if (ret != LZMA_OK || *out_pos == out_size || coder->dict.pos < coder->dict.size) return ret; } } static lzma_ret lz_decode(lzma_coder *coder, lzma_allocator *allocator lzma_attribute((unused)), const uint8_t *restrict in, size_t *restrict in_pos, size_t in_size, uint8_t *restrict out, size_t *restrict out_pos, size_t out_size, lzma_action action) { if (coder->next.code == NULL) return decode_buffer(coder, in, in_pos, in_size, out, out_pos, out_size); // We aren't the last coder in the chain, we need to decode // our input to a temporary buffer. while (*out_pos < out_size) { // Fill the temporary buffer if it is empty. if (!coder->next_finished && coder->temp.pos == coder->temp.size) { coder->temp.pos = 0; coder->temp.size = 0; const lzma_ret ret = coder->next.code( coder->next.coder, allocator, in, in_pos, in_size, coder->temp.buffer, &coder->temp.size, LZMA_BUFFER_SIZE, action); if (ret == LZMA_STREAM_END) coder->next_finished = true; else if (ret != LZMA_OK || coder->temp.size == 0) return ret; } if (coder->this_finished) { if (coder->temp.size != 0) return LZMA_DATA_ERROR; if (coder->next_finished) return LZMA_STREAM_END; return LZMA_OK; } const lzma_ret ret = decode_buffer(coder, coder->temp.buffer, &coder->temp.pos, coder->temp.size, out, out_pos, out_size); if (ret == LZMA_STREAM_END) coder->this_finished = true; else if (ret != LZMA_OK) return ret; else if (coder->next_finished && *out_pos < out_size) return LZMA_DATA_ERROR; } return LZMA_OK; } static void lz_decoder_end(lzma_coder *coder, lzma_allocator *allocator) { lzma_next_end(&coder->next, allocator); lzma_free(coder->dict.buf, allocator); if (coder->lz.end != NULL) coder->lz.end(coder->lz.coder, allocator); else lzma_free(coder->lz.coder, allocator); lzma_free(coder, allocator); return; } extern lzma_ret lzma_lz_decoder_init(lzma_next_coder *next, lzma_allocator *allocator, const lzma_filter_info *filters, lzma_ret (*lz_init)(lzma_lz_decoder *lz, lzma_allocator *allocator, const void *options, size_t *dict_size)) { // Allocate the base structure if it isn't already allocated. if (next->coder == NULL) { next->coder = lzma_alloc(sizeof(lzma_coder), allocator); if (next->coder == NULL) return LZMA_MEM_ERROR; next->code = &lz_decode; next->end = &lz_decoder_end; next->coder->dict.buf = NULL; next->coder->dict.size = 0; next->coder->lz = LZMA_LZ_DECODER_INIT; next->coder->next = LZMA_NEXT_CODER_INIT; } // Allocate and initialize the LZ-based decoder. It will also give // us the dictionary size. size_t dict_size; return_if_error(lz_init(&next->coder->lz, allocator, filters[0].options, &dict_size)); // If the dictionary size is very small, increase it to 4096 bytes. // This is to prevent constant wrapping of the dictionary, which // would slow things down. The downside is that since we don't check // separately for the real dictionary size, we may happily accept // corrupt files. if (dict_size < 4096) dict_size = 4096; // Make dictionary size a multipe of 16. Some LZ-based decoders like // LZMA use the lowest bits lzma_dict.pos to know the alignment of the // data. Aligned buffer is also good when memcpying from the // dictionary to the output buffer, since applications are // recommended to give aligned buffers to liblzma. // // Avoid integer overflow. if (dict_size > SIZE_MAX - 15) return LZMA_MEM_ERROR; dict_size = (dict_size + 15) & ~((size_t)(15)); // Allocate and initialize the dictionary. if (next->coder->dict.size != dict_size) { lzma_free(next->coder->dict.buf, allocator); next->coder->dict.buf = lzma_alloc(dict_size, allocator); if (next->coder->dict.buf == NULL) return LZMA_MEM_ERROR; next->coder->dict.size = dict_size; } dict_reset(&next->coder->dict); // Miscellaneous initializations next->coder->next_finished = false; next->coder->this_finished = false; next->coder->temp.pos = 0; next->coder->temp.size = 0; // Initialize the next filter in the chain, if any. return lzma_next_filter_init(&next->coder->next, allocator, filters + 1); } extern uint64_t lzma_lz_decoder_memusage(size_t dictionary_size) { return sizeof(lzma_coder) + (uint64_t)(dictionary_size); } extern void lzma_lz_decoder_uncompressed(lzma_coder *coder, lzma_vli uncompressed_size) { coder->lz.set_uncompressed(coder->lz.coder, uncompressed_size); }