/////////////////////////////////////////////////////////////////////////////// // /// \file lz_encoder.c /// \brief LZ in window // // Copyright (C) 1999-2006 Igor Pavlov // Copyright (C) 2007 Lasse Collin // // This library is free software; you can redistribute it and/or // modify it under the terms of the GNU Lesser General Public // License as published by the Free Software Foundation; either // version 2.1 of the License, or (at your option) any later version. // // This library is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU // Lesser General Public License for more details. // /////////////////////////////////////////////////////////////////////////////// #include "lz_encoder_private.h" // Hash Chains #ifdef HAVE_HC3 # include "hc3.h" #endif #ifdef HAVE_HC4 # include "hc4.h" #endif // Binary Trees #ifdef HAVE_BT2 # include "bt2.h" #endif #ifdef HAVE_BT3 # include "bt3.h" #endif #ifdef HAVE_BT4 # include "bt4.h" #endif /// This is needed in two places so provide a macro. #define get_cyclic_buffer_size(history_size) ((history_size) + 1) /// Calculate certain match finder properties and validate the calculated /// values. This is as its own function, because *num_items is needed to /// calculate memory requirements in common/memory.c. extern uint32_t lzma_lz_encoder_hash_properties(lzma_match_finder match_finder, uint32_t history_size, uint32_t *restrict hash_mask, uint32_t *restrict hash_size_sum, uint32_t *restrict num_items) { uint32_t fix_hash_size; uint32_t sons; switch (match_finder) { #ifdef HAVE_HC3 case LZMA_MF_HC3: fix_hash_size = LZMA_HC3_FIX_HASH_SIZE; sons = 1; break; #endif #ifdef HAVE_HC4 case LZMA_MF_HC4: fix_hash_size = LZMA_HC4_FIX_HASH_SIZE; sons = 1; break; #endif #ifdef HAVE_BT2 case LZMA_MF_BT2: fix_hash_size = LZMA_BT2_FIX_HASH_SIZE; sons = 2; break; #endif #ifdef HAVE_BT3 case LZMA_MF_BT3: fix_hash_size = LZMA_BT3_FIX_HASH_SIZE; sons = 2; break; #endif #ifdef HAVE_BT4 case LZMA_MF_BT4: fix_hash_size = LZMA_BT4_FIX_HASH_SIZE; sons = 2; break; #endif default: return true; } uint32_t hs; #ifdef HAVE_LZMA_BT2 if (match_finder == LZMA_BT2) { // NOTE: hash_mask is not used by the BT2 match finder, // but it is initialized just in case. hs = LZMA_BT2_HASH_SIZE; *hash_mask = 0; } else #endif { hs = history_size - 1; hs |= (hs >> 1); hs |= (hs >> 2); hs |= (hs >> 4); hs |= (hs >> 8); hs >>= 1; hs |= 0xFFFF; if (hs > (UINT32_C(1) << 24)) { if (match_finder == LZMA_MF_HC4 || match_finder == LZMA_MF_BT4) hs >>= 1; else hs = (1 << 24) - 1; } *hash_mask = hs; ++hs; } *hash_size_sum = hs + fix_hash_size; *num_items = *hash_size_sum + get_cyclic_buffer_size(history_size) * sons; return false; } extern lzma_ret lzma_lz_encoder_reset(lzma_lz_encoder *lz, lzma_allocator *allocator, bool (*process)(lzma_coder *coder, uint8_t *restrict out, size_t *restrict out_pos, size_t out_size), lzma_vli uncompressed_size, size_t history_size, size_t additional_buffer_before, size_t match_max_len, size_t additional_buffer_after, lzma_match_finder match_finder, uint32_t match_finder_cycles, const uint8_t *preset_dictionary, size_t preset_dictionary_size) { // Set uncompressed size. lz->uncompressed_size = uncompressed_size; /////////////// // In Window // /////////////// // Validate history size. if (history_size < LZMA_DICTIONARY_SIZE_MIN || history_size > LZMA_DICTIONARY_SIZE_MAX) { lzma_lz_encoder_end(lz, allocator); return LZMA_HEADER_ERROR; } assert(history_size <= MAX_VAL_FOR_NORMALIZE - 256); assert(LZMA_DICTIONARY_SIZE_MAX <= MAX_VAL_FOR_NORMALIZE - 256); // Calculate the size of the history buffer to allocate. // TODO: Get a reason for magic constant of 256. const size_t size_reserv = (history_size + additional_buffer_before + match_max_len + additional_buffer_after) / 2 + 256; lz->keep_size_before = history_size + additional_buffer_before; lz->keep_size_after = match_max_len + additional_buffer_after; const size_t buffer_size = lz->keep_size_before + lz->keep_size_after + size_reserv; // Allocate history buffer if its size has changed. if (buffer_size != lz->size) { lzma_free(lz->buffer, allocator); lz->buffer = lzma_alloc(buffer_size, allocator); if (lz->buffer == NULL) { lzma_lz_encoder_end(lz, allocator); return LZMA_MEM_ERROR; } } // Allocation successful. Store the new size. lz->size = buffer_size; // Reset in window variables. lz->offset = 0; lz->read_pos = 0; lz->read_limit = 0; lz->write_pos = 0; lz->stream_end_was_reached = false; ////////////////// // Match Finder // ////////////////// // Validate match_finder, set function pointers and a few match // finder specific variables. switch (match_finder) { #ifdef HAVE_HC3 case LZMA_MF_HC3: lz->get_matches = &lzma_hc3_get_matches; lz->skip = &lzma_hc3_skip; lz->cut_value = 8 + (match_max_len >> 2); break; #endif #ifdef HAVE_HC4 case LZMA_MF_HC4: lz->get_matches = &lzma_hc4_get_matches; lz->skip = &lzma_hc4_skip; lz->cut_value = 8 + (match_max_len >> 2); break; #endif #ifdef HAVE_BT2 case LZMA_MF_BT2: lz->get_matches = &lzma_bt2_get_matches; lz->skip = &lzma_bt2_skip; lz->cut_value = 16 + (match_max_len >> 1); break; #endif #ifdef HAVE_BT3 case LZMA_MF_BT3: lz->get_matches = &lzma_bt3_get_matches; lz->skip = &lzma_bt3_skip; lz->cut_value = 16 + (match_max_len >> 1); break; #endif #ifdef HAVE_BT4 case LZMA_MF_BT4: lz->get_matches = &lzma_bt4_get_matches; lz->skip = &lzma_bt4_skip; lz->cut_value = 16 + (match_max_len >> 1); break; #endif default: lzma_lz_encoder_end(lz, allocator); return LZMA_HEADER_ERROR; } // Check if we have been requested to use a non-default cut_value. if (match_finder_cycles > 0) lz->cut_value = match_finder_cycles; lz->match_max_len = match_max_len; lz->cyclic_buffer_size = get_cyclic_buffer_size(history_size); uint32_t hash_size_sum; uint32_t num_items; if (lzma_lz_encoder_hash_properties(match_finder, history_size, &lz->hash_mask, &hash_size_sum, &num_items)) { lzma_lz_encoder_end(lz, allocator); return LZMA_HEADER_ERROR; } if (num_items != lz->num_items) { #if UINT32_MAX >= SIZE_MAX / 4 // Check for integer overflow. (Huge dictionaries are not // possible on 32-bit CPU.) if (num_items > SIZE_MAX / sizeof(uint32_t)) { lzma_lz_encoder_end(lz, allocator); return LZMA_MEM_ERROR; } #endif const size_t size_in_bytes = (size_t)(num_items) * sizeof(uint32_t); lzma_free(lz->hash, allocator); lz->hash = lzma_alloc(size_in_bytes, allocator); if (lz->hash == NULL) { lzma_lz_encoder_end(lz, allocator); return LZMA_MEM_ERROR; } lz->num_items = num_items; } lz->son = lz->hash + hash_size_sum; // Reset the hash table to empty hash values. { uint32_t *restrict items = lz->hash; for (uint32_t i = 0; i < hash_size_sum; ++i) items[i] = EMPTY_HASH_VALUE; } lz->cyclic_buffer_pos = 0; // Because zero is used as empty hash value, make the first byte // appear at buffer[1 - offset]. ++lz->offset; // If we are using a preset dictionary, read it now. // TODO: This isn't implemented yet so return LZMA_HEADER_ERROR. if (preset_dictionary != NULL && preset_dictionary_size > 0) { lzma_lz_encoder_end(lz, allocator); return LZMA_HEADER_ERROR; } // Set the process function pointer. lz->process = process; return LZMA_OK; } extern void lzma_lz_encoder_end(lzma_lz_encoder *lz, lzma_allocator *allocator) { lzma_free(lz->hash, allocator); lz->hash = NULL; lz->num_items = 0; lzma_free(lz->buffer, allocator); lz->buffer = NULL; lz->size = 0; return; } /// \brief Moves the data in the input window to free space for new data /// /// lz->buffer is a sliding input window, which keeps lz->keep_size_before /// bytes of input history available all the time. Now and then we need to /// "slide" the buffer to make space for the new data to the end of the /// buffer. At the same time, data older than keep_size_before is dropped. /// static void move_window(lzma_lz_encoder *lz) { // buffer[move_offset] will become buffer[0]. assert(lz->read_pos > lz->keep_size_after); size_t move_offset = lz->read_pos - lz->keep_size_before; // We need one additional byte, since move_pos() moves on 1 byte. // TODO: Clean up? At least document more. if (move_offset > 0) --move_offset; assert(lz->write_pos > move_offset); const size_t move_size = lz->write_pos - move_offset; assert(move_offset + move_size <= lz->size); memmove(lz->buffer, lz->buffer + move_offset, move_size); lz->offset += move_offset; lz->read_pos -= move_offset; lz->read_limit -= move_offset; lz->write_pos -= move_offset; return; } /// \brief Tries to fill the input window (lz->buffer) /// /// If we are the last encoder in the chain, our input data is in in[]. /// Otherwise we call the next filter in the chain to process in[] and /// write its output to lz->buffer. /// /// This function must not be called once it has returned LZMA_STREAM_END. /// static lzma_ret fill_window(lzma_coder *coder, lzma_allocator *allocator, const uint8_t *in, size_t *in_pos, size_t in_size, lzma_action action) { assert(coder->lz.read_pos <= coder->lz.write_pos); lzma_ret ret; // Move the sliding window if needed. if (coder->lz.read_pos >= coder->lz.size - coder->lz.keep_size_after) move_window(&coder->lz); if (coder->next.code == NULL) { // Not using a filter, simply memcpy() as much as possible. bufcpy(in, in_pos, in_size, coder->lz.buffer, &coder->lz.write_pos, coder->lz.size); if (action == LZMA_FINISH && *in_pos == in_size) ret = LZMA_STREAM_END; else ret = LZMA_OK; } else { ret = coder->next.code(coder->next.coder, allocator, in, in_pos, in_size, coder->lz.buffer, &coder->lz.write_pos, coder->lz.size, action); } // If end of stream has been reached, we allow the encoder to process // all the input (that is, read_pos is allowed to reach write_pos). // Otherwise we keep keep_size_after bytes available as prebuffer. if (ret == LZMA_STREAM_END) { coder->lz.stream_end_was_reached = true; coder->lz.read_limit = coder->lz.write_pos; } else if (coder->lz.write_pos > coder->lz.keep_size_after) { // This needs to be done conditionally, because if we got // only little new input, there may be too little input // to do any encoding yet. coder->lz.read_limit = coder->lz.write_pos - coder->lz.keep_size_after; } return ret; } extern lzma_ret lzma_lz_encode(lzma_coder *coder, lzma_allocator *allocator, const uint8_t *restrict in, size_t *restrict in_pos, size_t in_size, uint8_t *restrict out, size_t *restrict out_pos, size_t out_size, lzma_action action) { while (*out_pos < out_size && (*in_pos < in_size || action == LZMA_FINISH)) { // Fill the input window if there is no more usable data. if (!coder->lz.stream_end_was_reached && coder->lz.read_pos >= coder->lz.read_limit) { const lzma_ret ret = fill_window(coder, allocator, in, in_pos, in_size, action); if (ret != LZMA_OK && ret != LZMA_STREAM_END) return ret; } // Encode if (coder->lz.process(coder, out, out_pos, out_size)) return LZMA_STREAM_END; } return LZMA_OK; } /// \brief Normalizes hash values /// /// lzma_lz_normalize is called when lz->pos hits MAX_VAL_FOR_NORMALIZE, /// which currently happens once every 2 GiB of input data (to be exact, /// after the first 2 GiB it happens once every 2 GiB minus dictionary_size /// bytes). lz->pos is incremented by lzma_lz_move_pos(). /// /// lz->hash contains big amount of offsets relative to lz->buffer. /// The offsets are stored as uint32_t, which is the only reasonable /// datatype for these offsets; uint64_t would waste far too much RAM /// and uint16_t would limit the dictionary to 64 KiB (far too small). /// /// When compressing files over 2 GiB, lz->buffer needs to be moved forward /// to avoid integer overflows. We scan the lz->hash array and fix every /// value to match the updated lz->buffer. extern void lzma_lz_encoder_normalize(lzma_lz_encoder *lz) { const uint32_t subvalue = lz->read_pos - lz->cyclic_buffer_size; assert(subvalue <= INT32_MAX); { const uint32_t num_items = lz->num_items; uint32_t *restrict items = lz->hash; for (uint32_t i = 0; i < num_items; ++i) { // If the distance is greater than the dictionary // size, we can simply mark the item as empty. if (items[i] <= subvalue) items[i] = EMPTY_HASH_VALUE; else items[i] -= subvalue; } } // Update offset to match the new locations. lz->offset -= subvalue; return; }