/////////////////////////////////////////////////////////////////////////////// // /// \file crc64.c /// \brief CRC64 calculation /// /// There are two methods in this file. crc64_generic uses the /// the slice-by-four algorithm. This is the same idea that is /// used in crc32_fast.c, but for CRC64 we use only four tables /// instead of eight to avoid increasing CPU cache usage. /// /// crc64_clmul uses 32/64-bit x86 SSSE3, SSE4.1, and CLMUL instructions. /// It was derived from /// https://www.researchgate.net/publication/263424619_Fast_CRC_computation /// and the public domain code from https://github.com/rawrunprotected/crc /// (URLs were checked on 2023-09-29). /// /// FIXME: Builds for 32-bit x86 use crc64_x86.S by default instead /// of this file and thus CLMUL version isn't available on 32-bit x86 /// unless configured with --disable-assembler. Even then the lookup table /// isn't omitted in crc64_table.c since it doesn't know that assembly /// code has been disabled. // // Authors: Lasse Collin // Ilya Kurdyukov // // This file has been put into the public domain. // You can do whatever you want with this file. // /////////////////////////////////////////////////////////////////////////////// #include "check.h" #include "crc_common.h" ///////////////////////////////// // Generic slice-by-four CRC64 // ///////////////////////////////// #ifdef CRC_GENERIC #ifdef WORDS_BIGENDIAN # define A1(x) ((x) >> 56) #else # define A1 A #endif // See the comments in crc32_fast.c. They aren't duplicated here. static uint64_t crc64_generic(const uint8_t *buf, size_t size, uint64_t crc) { crc = ~crc; #ifdef WORDS_BIGENDIAN crc = bswap64(crc); #endif if (size > 4) { while ((uintptr_t)(buf) & 3) { crc = lzma_crc64_table[0][*buf++ ^ A1(crc)] ^ S8(crc); --size; } const uint8_t *const limit = buf + (size & ~(size_t)(3)); size &= (size_t)(3); while (buf < limit) { #ifdef WORDS_BIGENDIAN const uint32_t tmp = (uint32_t)(crc >> 32) ^ aligned_read32ne(buf); #else const uint32_t tmp = (uint32_t)crc ^ aligned_read32ne(buf); #endif buf += 4; crc = lzma_crc64_table[3][A(tmp)] ^ lzma_crc64_table[2][B(tmp)] ^ S32(crc) ^ lzma_crc64_table[1][C(tmp)] ^ lzma_crc64_table[0][D(tmp)]; } } while (size-- != 0) crc = lzma_crc64_table[0][*buf++ ^ A1(crc)] ^ S8(crc); #ifdef WORDS_BIGENDIAN crc = bswap64(crc); #endif return ~crc; } #endif ///////////////////// // x86 CLMUL CRC64 // ///////////////////// #ifdef CRC_CLMUL #include /* // These functions were used to generate the constants // at the top of crc64_clmul(). static uint64_t calc_lo(uint64_t poly) { uint64_t a = poly; uint64_t b = 0; for (unsigned i = 0; i < 64; ++i) { b = (b >> 1) | (a << 63); a = (a >> 1) ^ (a & 1 ? poly : 0); } return b; } static uint64_t calc_hi(uint64_t poly, uint64_t a) { for (unsigned i = 0; i < 64; ++i) a = (a >> 1) ^ (a & 1 ? poly : 0); return a; } */ // MSVC (VS2015 - VS2022) produces bad 32-bit x86 code from the CLMUL CRC // code when optimizations are enabled (release build). According to the bug // report, the ebx register is corrupted and the calculated result is wrong. // Trying to workaround the problem with "__asm mov ebx, ebx" didn't help. // The following pragma works and performance is still good. x86-64 builds // aren't affected by this problem. // // NOTE: Another pragma after the function restores the optimizations. // If the #if condition here is updated, the other one must be updated too. #if defined(_MSC_VER) && !defined(__INTEL_COMPILER) && !defined(__clang__) \ && defined(_M_IX86) # pragma optimize("g", off) #endif // EDG-based compilers (Intel's classic compiler and compiler for E2K) can // define __GNUC__ but the attribute must not be used with them. // The new Clang-based ICX needs the attribute. // // NOTE: Build systems check for this too, keep them in sync with this. #if (defined(__GNUC__) || defined(__clang__)) && !defined(__EDG__) __attribute__((__target__("ssse3,sse4.1,pclmul"))) #endif static uint64_t crc64_clmul(const uint8_t *buf, size_t size, uint64_t crc) { // The prototypes of the intrinsics use signed types while most of // the values are treated as unsigned here. These warnings in this // function have been checked and found to be harmless so silence them. #if TUKLIB_GNUC_REQ(4, 6) || defined(__clang__) # pragma GCC diagnostic push # pragma GCC diagnostic ignored "-Wsign-conversion" # pragma GCC diagnostic ignored "-Wconversion" #endif #ifndef CRC_USE_GENERIC_FOR_SMALL_INPUTS // The code assumes that there is at least one byte of input. if (size == 0) return crc; #endif // const uint64_t poly = 0xc96c5795d7870f42; // CRC polynomial const uint64_t p = 0x92d8af2baf0e1e85; // (poly << 1) | 1 const uint64_t mu = 0x9c3e466c172963d5; // (calc_lo(poly) << 1) | 1 const uint64_t k2 = 0xdabe95afc7875f40; // calc_hi(poly, 1) const uint64_t k1 = 0xe05dd497ca393ae4; // calc_hi(poly, k2) const __m128i vfold8 = _mm_set_epi64x(p, mu); const __m128i vfold16 = _mm_set_epi64x(k2, k1); __m128i v0, v1, v2; #if defined(__i386__) || defined(_M_IX86) crc_simd_body(buf, size, &v0, &v1, vfold16, _mm_set_epi64x(0, ~crc)); #else // GCC and Clang would produce good code with _mm_set_epi64x // but MSVC needs _mm_cvtsi64_si128 on x86-64. crc_simd_body(buf, size, &v0, &v1, vfold16, _mm_cvtsi64_si128(~crc)); #endif v1 = _mm_xor_si128(_mm_clmulepi64_si128(v0, vfold16, 0x10), v1); v0 = _mm_clmulepi64_si128(v1, vfold8, 0x00); v2 = _mm_clmulepi64_si128(v0, vfold8, 0x10); v0 = _mm_xor_si128(_mm_xor_si128(v1, _mm_slli_si128(v0, 8)), v2); #if defined(__i386__) || defined(_M_IX86) return ~(((uint64_t)(uint32_t)_mm_extract_epi32(v0, 3) << 32) | (uint64_t)(uint32_t)_mm_extract_epi32(v0, 2)); #else return ~(uint64_t)_mm_extract_epi64(v0, 1); #endif #if TUKLIB_GNUC_REQ(4, 6) || defined(__clang__) # pragma GCC diagnostic pop #endif } #if defined(_MSC_VER) && !defined(__INTEL_COMPILER) && !defined(__clang__) \ && defined(_M_IX86) # pragma optimize("", on) #endif #endif #if defined(CRC_GENERIC) && defined(CRC_CLMUL) typedef uint64_t (*crc64_func_type)( const uint8_t *buf, size_t size, uint64_t crc); // Clang 16.0.0 and older has a bug where it marks the ifunc resolver // function as unused since it is static and never used outside of // __attribute__((__ifunc__())). #if defined(HAVE_FUNC_ATTRIBUTE_IFUNC) && defined(__clang__) # pragma GCC diagnostic push # pragma GCC diagnostic ignored "-Wunused-function" #endif static crc64_func_type crc64_resolve(void) { return is_clmul_supported() ? &crc64_clmul : &crc64_generic; } #if defined(HAVE_FUNC_ATTRIBUTE_IFUNC) && defined(__clang__) # pragma GCC diagnostic pop #endif #ifndef HAVE_FUNC_ATTRIBUTE_IFUNC #ifdef HAVE_FUNC_ATTRIBUTE_CONSTRUCTOR # define CRC64_SET_FUNC_ATTR __attribute__((__constructor__)) static crc64_func_type crc64_func; #else # define CRC64_SET_FUNC_ATTR static uint64_t crc64_dispatch(const uint8_t *buf, size_t size, uint64_t crc); static crc64_func_type crc64_func = &crc64_dispatch; #endif CRC64_SET_FUNC_ATTR static void crc64_set_func(void) { crc64_func = crc64_resolve(); return; } #ifndef HAVE_FUNC_ATTRIBUTE_CONSTRUCTOR static uint64_t crc64_dispatch(const uint8_t *buf, size_t size, uint64_t crc) { // When __attribute__((__ifunc__(...))) and // __attribute__((__constructor__)) isn't supported, set the // function pointer without any locking. If multiple threads run // the detection code in parallel, they will all end up setting // the pointer to the same value. This avoids the use of // mythread_once() on every call to lzma_crc64() but this likely // isn't strictly standards compliant. Let's change it if it breaks. crc64_set_func(); return crc64_func(buf, size, crc); } #endif #endif #endif #ifdef CRC_USE_IFUNC extern LZMA_API(uint64_t) lzma_crc64(const uint8_t *buf, size_t size, uint64_t crc) __attribute__((__ifunc__("crc64_resolve"))); #else extern LZMA_API(uint64_t) lzma_crc64(const uint8_t *buf, size_t size, uint64_t crc) { #if defined(CRC_GENERIC) && defined(CRC_CLMUL) // If CLMUL is available, it is the best for non-tiny inputs, // being over twice as fast as the generic slice-by-four version. // However, for size <= 16 it's different. In the extreme case // of size == 1 the generic version can be five times faster. // At size >= 8 the CLMUL starts to become reasonable. It // varies depending on the alignment of buf too. // // The above doesn't include the overhead of mythread_once(). // At least on x86-64 GNU/Linux, pthread_once() is very fast but // it still makes lzma_crc64(buf, 1, crc) 50-100 % slower. When // size reaches 12-16 bytes the overhead becomes negligible. // // So using the generic version for size <= 16 may give better // performance with tiny inputs but if such inputs happen rarely // it's not so obvious because then the lookup table of the // generic version may not be in the processor cache. #ifdef CRC_USE_GENERIC_FOR_SMALL_INPUTS if (size <= 16) return crc64_generic(buf, size, crc); #endif /* #ifndef HAVE_FUNC_ATTRIBUTE_CONSTRUCTOR // See crc64_dispatch(). This would be the alternative which uses // locking and doesn't use crc64_dispatch(). Note that on Windows // this method needs Vista threads. mythread_once(crc64_set_func); #endif */ return crc64_func(buf, size, crc); #elif defined(CRC_CLMUL) // If CLMUL is used unconditionally without runtime CPU detection // then omitting the generic version and its 8 KiB lookup table // makes the library smaller. // // FIXME: Lookup table isn't currently omitted on 32-bit x86, // see crc64_table.c. return crc64_clmul(buf, size, crc); #else return crc64_generic(buf, size, crc); #endif } #endif