/////////////////////////////////////////////////////////////////////////////// // /// \file block_decoder.c /// \brief Decodes .lzma Blocks // // Copyright (C) 2007 Lasse Collin // // This library is free software; you can redistribute it and/or // modify it under the terms of the GNU Lesser General Public // License as published by the Free Software Foundation; either // version 2.1 of the License, or (at your option) any later version. // // This library is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU // Lesser General Public License for more details. // /////////////////////////////////////////////////////////////////////////////// #include "block_decoder.h" #include "block_private.h" #include "raw_decoder.h" #include "check.h" struct lzma_coder_s { enum { SEQ_CODE, SEQ_CHECK, SEQ_UNCOMPRESSED_SIZE, SEQ_BACKWARD_SIZE, SEQ_PADDING, SEQ_END, } sequence; /// The filters in the chain; initialized with lzma_raw_decoder_init(). lzma_next_coder next; /// Decoding options; we also write Total Size, Compressed Size, and /// Uncompressed Size back to this structure when the encoding has /// been finished. lzma_options_block *options; /// Position in variable-length integers (and in some other places). size_t pos; /// Check of the uncompressed data lzma_check check; /// Total Size calculated while encoding lzma_vli total_size; /// Compressed Size calculated while encoding lzma_vli compressed_size; /// Uncompressed Size calculated while encoding lzma_vli uncompressed_size; /// Maximum allowed total_size lzma_vli total_limit; /// Maximum allowed uncompressed_size lzma_vli uncompressed_limit; /// Temporary location for the Uncompressed Size and Backward Size /// fields in Block Footer. lzma_vli tmp; /// Size of the Backward Size field - This is needed so that we /// can verify the Backward Size and still keep updating total_size. size_t size_of_backward_size; }; static lzma_ret update_sequence(lzma_coder *coder) { switch (coder->sequence) { case SEQ_CODE: if (coder->options->check != LZMA_CHECK_NONE) { lzma_check_finish(&coder->check, coder->options->check); coder->sequence = SEQ_CHECK; break; } // Fall through case SEQ_CHECK: if (coder->options->has_uncompressed_size_in_footer) { coder->sequence = SEQ_UNCOMPRESSED_SIZE; break; } // Fall through case SEQ_UNCOMPRESSED_SIZE: if (coder->options->has_backward_size) { coder->sequence = SEQ_BACKWARD_SIZE; break; } // Fall through case SEQ_BACKWARD_SIZE: if (coder->options->handle_padding) { coder->sequence = SEQ_PADDING; break; } case SEQ_PADDING: if (!is_size_valid(coder->total_size, coder->options->total_size) || !is_size_valid(coder->compressed_size, coder->options->compressed_size) || !is_size_valid(coder->uncompressed_size, coder->options->uncompressed_size)) return LZMA_DATA_ERROR; // Copy the values into coder->options. The caller // may use this information to construct Index. coder->options->total_size = coder->total_size; coder->options->compressed_size = coder->compressed_size; coder->options->uncompressed_size = coder->uncompressed_size; return LZMA_STREAM_END; default: assert(0); return LZMA_PROG_ERROR; } return LZMA_OK; } static lzma_ret block_decode(lzma_coder *coder, lzma_allocator *allocator, const uint8_t *restrict in, size_t *restrict in_pos, size_t in_size, uint8_t *restrict out, size_t *restrict out_pos, size_t out_size, lzma_action action) { // Special case when the Block has only Block Header. if (coder->sequence == SEQ_END) return LZMA_STREAM_END; // FIXME: Termination condition should work but could be cleaner. while (*out_pos < out_size && (*in_pos < in_size || coder->sequence == SEQ_CODE)) switch (coder->sequence) { case SEQ_CODE: { const size_t in_start = *in_pos; const size_t out_start = *out_pos; lzma_ret ret = coder->next.code(coder->next.coder, allocator, in, in_pos, in_size, out, out_pos, out_size, action); const size_t in_used = *in_pos - in_start; const size_t out_used = *out_pos - out_start; if (update_size(&coder->total_size, in_used, coder->total_limit) || update_size(&coder->compressed_size, in_used, coder->options->compressed_size) || update_size(&coder->uncompressed_size, out_used, coder->uncompressed_limit)) return LZMA_DATA_ERROR; lzma_check_update(&coder->check, coder->options->check, out + out_start, out_used); if (ret != LZMA_STREAM_END) return ret; ret = update_sequence(coder); if (ret != LZMA_OK) return ret; break; } case SEQ_CHECK: switch (coder->options->check) { case LZMA_CHECK_CRC32: if (((coder->check.crc32 >> (coder->pos * 8)) & 0xFF) != in[*in_pos]) return LZMA_DATA_ERROR; break; case LZMA_CHECK_CRC64: if (((coder->check.crc64 >> (coder->pos * 8)) & 0xFF) != in[*in_pos]) return LZMA_DATA_ERROR; break; case LZMA_CHECK_SHA256: if (coder->check.sha256.buffer[coder->pos] != in[*in_pos]) return LZMA_DATA_ERROR; break; default: assert(coder->options->check != LZMA_CHECK_NONE); assert(coder->options->check <= LZMA_CHECK_ID_MAX); break; } if (update_size(&coder->total_size, 1, coder->total_limit)) return LZMA_DATA_ERROR; ++*in_pos; if (++coder->pos == lzma_check_sizes[coder->options->check]) { const lzma_ret ret = update_sequence(coder); if (ret != LZMA_OK) return ret; coder->pos = 0; } break; case SEQ_UNCOMPRESSED_SIZE: { const size_t in_start = *in_pos; lzma_ret ret = lzma_vli_decode(&coder->tmp, &coder->pos, in, in_pos, in_size); if (update_size(&coder->total_size, *in_pos - in_start, coder->total_limit)) return LZMA_DATA_ERROR; if (ret != LZMA_STREAM_END) return ret; if (coder->tmp != coder->uncompressed_size) return LZMA_DATA_ERROR; coder->pos = 0; coder->tmp = 0; ret = update_sequence(coder); if (ret != LZMA_OK) return ret; break; } case SEQ_BACKWARD_SIZE: { const size_t in_start = *in_pos; lzma_ret ret = lzma_vli_decode(&coder->tmp, &coder->pos, in, in_pos, in_size); const size_t in_used = *in_pos - in_start; if (update_size(&coder->total_size, in_used, coder->total_limit)) return LZMA_DATA_ERROR; coder->size_of_backward_size += in_used; if (ret != LZMA_STREAM_END) return ret; if (coder->tmp != coder->total_size - coder->size_of_backward_size) return LZMA_DATA_ERROR; ret = update_sequence(coder); if (ret != LZMA_OK) return ret; break; } case SEQ_PADDING: if (in[*in_pos] == 0x00) { if (update_size(&coder->total_size, 1, coder->total_limit)) return LZMA_DATA_ERROR; ++*in_pos; break; } return update_sequence(coder); default: return LZMA_PROG_ERROR; } return LZMA_OK; } static void block_decoder_end(lzma_coder *coder, lzma_allocator *allocator) { lzma_next_coder_end(&coder->next, allocator); lzma_free(coder, allocator); return; } extern lzma_ret lzma_block_decoder_init(lzma_next_coder *next, lzma_allocator *allocator, lzma_options_block *options) { // This is pretty similar to lzma_block_encoder_init(). // See comments there. if (next->coder == NULL) { next->coder = lzma_alloc(sizeof(lzma_coder), allocator); if (next->coder == NULL) return LZMA_MEM_ERROR; next->code = &block_decode; next->end = &block_decoder_end; next->coder->next = LZMA_NEXT_CODER_INIT; } if (!lzma_vli_is_valid(options->total_size) || !lzma_vli_is_valid(options->compressed_size) || !lzma_vli_is_valid(options->uncompressed_size) || !lzma_vli_is_valid(options->total_size) || !lzma_vli_is_valid(options->total_limit) || !lzma_vli_is_valid(options->uncompressed_limit) || (options->uncompressed_size != LZMA_VLI_VALUE_UNKNOWN && options->uncompressed_size > options->uncompressed_limit) || (options->total_size != LZMA_VLI_VALUE_UNKNOWN && options->total_size > options->total_limit) || (!options->has_eopm && options->uncompressed_size == LZMA_VLI_VALUE_UNKNOWN) || options->header_size > options->total_size || (options->handle_padding && (options->has_uncompressed_size_in_footer || options->has_backward_size))) return LZMA_PROG_ERROR; return_if_error(lzma_check_init(&next->coder->check, options->check)); if (!options->has_eopm && options->uncompressed_size == 0) { if (!is_size_valid(0, options->compressed_size)) return LZMA_PROG_ERROR; if (options->check != LZMA_CHECK_NONE) { lzma_check_finish(&next->coder->check, options->check); next->coder->sequence = SEQ_CHECK; } else if (options->handle_padding) { next->coder->sequence = SEQ_PADDING; } else { next->coder->sequence = SEQ_END; } } else { next->coder->sequence = SEQ_CODE; } return_if_error(lzma_raw_decoder_init(&next->coder->next, allocator, options->filters, options->has_eopm ? LZMA_VLI_VALUE_UNKNOWN : options->uncompressed_size, true)); next->coder->options = options; next->coder->pos = 0; next->coder->total_size = options->header_size; next->coder->compressed_size = 0; next->coder->uncompressed_size = 0; next->coder->total_limit = MIN(options->total_size, options->total_limit); next->coder->uncompressed_limit = MIN(options->uncompressed_size, options->uncompressed_limit); next->coder->tmp = 0; next->coder->size_of_backward_size = 0; return LZMA_OK; } extern LZMA_API lzma_ret lzma_block_decoder(lzma_stream *strm, lzma_options_block *options) { lzma_next_strm_init(strm, lzma_block_decoder_init, options); strm->internal->supported_actions[LZMA_RUN] = true; strm->internal->supported_actions[LZMA_SYNC_FLUSH] = true; return LZMA_OK; }