/////////////////////////////////////////////////////////////////////////////// // /// \file crc_x86_clmul.h /// \brief CRC32 and CRC64 implementations using CLMUL instructions. /// /// The CRC32 and CRC64 implementations use 32/64-bit x86 SSSE3, SSE4.1, and /// CLMUL instructions. This is compatible with Elbrus 2000 (E2K) too. /// /// They were derived from /// https://www.researchgate.net/publication/263424619_Fast_CRC_computation /// and the public domain code from https://github.com/rawrunprotected/crc /// (URLs were checked on 2023-10-14). /// /// While this file has both CRC32 and CRC64 implementations, only one /// should be built at a time to ensure that crc_simd_body() is inlined /// even with compilers with which lzma_always_inline expands to plain inline. /// The version to build is selected by defining BUILDING_CRC32_CLMUL or /// BUILDING_CRC64_CLMUL before including this file. /// /// FIXME: Builds for 32-bit x86 use the assembly .S files by default /// unless configured with --disable-assembler. Even then the lookup table /// isn't omitted in crc64_table.c since it doesn't know that assembly /// code has been disabled. // // Authors: Ilya Kurdyukov // Hans Jansen // Lasse Collin // Jia Tan // /////////////////////////////////////////////////////////////////////////////// // This file must not be included more than once. #ifdef LZMA_CRC_X86_CLMUL_H # error crc_x86_clmul.h was included twice. #endif #define LZMA_CRC_X86_CLMUL_H #include #if defined(_MSC_VER) # include #elif defined(HAVE_CPUID_H) # include #endif // EDG-based compilers (Intel's classic compiler and compiler for E2K) can // define __GNUC__ but the attribute must not be used with them. // The new Clang-based ICX needs the attribute. // // NOTE: Build systems check for this too, keep them in sync with this. #if (defined(__GNUC__) || defined(__clang__)) && !defined(__EDG__) # define crc_attr_target \ __attribute__((__target__("ssse3,sse4.1,pclmul"))) #else # define crc_attr_target #endif #define MASK_L(in, mask, r) r = _mm_shuffle_epi8(in, mask) #define MASK_H(in, mask, r) \ r = _mm_shuffle_epi8(in, _mm_xor_si128(mask, vsign)) #define MASK_LH(in, mask, low, high) \ MASK_L(in, mask, low); \ MASK_H(in, mask, high) crc_attr_target crc_attr_no_sanitize_address static lzma_always_inline void crc_simd_body(const uint8_t *buf, const size_t size, __m128i *v0, __m128i *v1, const __m128i vfold16, const __m128i initial_crc) { // Create a vector with 8-bit values 0 to 15. This is used to // construct control masks for _mm_blendv_epi8 and _mm_shuffle_epi8. const __m128i vramp = _mm_setr_epi32( 0x03020100, 0x07060504, 0x0b0a0908, 0x0f0e0d0c); // This is used to inverse the control mask of _mm_shuffle_epi8 // so that bytes that wouldn't be picked with the original mask // will be picked and vice versa. const __m128i vsign = _mm_set1_epi8(-0x80); // Memory addresses A to D and the distances between them: // // A B C D // [skip_start][size][skip_end] // [ size2 ] // // A and D are 16-byte aligned. B and C are 1-byte aligned. // skip_start and skip_end are 0-15 bytes. size is at least 1 byte. // // A = aligned_buf will initially point to this address. // B = The address pointed by the caller-supplied buf. // C = buf + size == aligned_buf + size2 // D = buf + size + skip_end == aligned_buf + size2 + skip_end const size_t skip_start = (size_t)((uintptr_t)buf & 15); const size_t skip_end = (size_t)((0U - (uintptr_t)(buf + size)) & 15); const __m128i *aligned_buf = (const __m128i *)( (uintptr_t)buf & ~(uintptr_t)15); // If size2 <= 16 then the whole input fits into a single 16-byte // vector. If size2 > 16 then at least two 16-byte vectors must // be processed. If size2 > 16 && size <= 16 then there is only // one 16-byte vector's worth of input but it is unaligned in memory. // // NOTE: There is no integer overflow here if the arguments // are valid. If this overflowed, buf + size would too. const size_t size2 = skip_start + size; // Masks to be used with _mm_blendv_epi8 and _mm_shuffle_epi8: // The first skip_start or skip_end bytes in the vectors will have // the high bit (0x80) set. _mm_blendv_epi8 and _mm_shuffle_epi8 // will produce zeros for these positions. (Bitwise-xor of these // masks with vsign will produce the opposite behavior.) const __m128i mask_start = _mm_sub_epi8(vramp, _mm_set1_epi8((char)skip_start)); const __m128i mask_end = _mm_sub_epi8(vramp, _mm_set1_epi8((char)skip_end)); // Get the first 1-16 bytes into data0. If loading less than 16 // bytes, the bytes are loaded to the high bits of the vector and // the least significant positions are filled with zeros. const __m128i data0 = _mm_blendv_epi8(_mm_load_si128(aligned_buf), _mm_setzero_si128(), mask_start); aligned_buf++; __m128i v2, v3; #ifndef CRC_USE_GENERIC_FOR_SMALL_INPUTS if (size <= 16) { // Right-shift initial_crc by 1-16 bytes based on "size" // and store the result in v1 (high bytes) and v0 (low bytes). // // NOTE: The highest 8 bytes of initial_crc are zeros so // v1 will be filled with zeros if size >= 8. The highest // 8 bytes of v1 will always become zeros. // // [ v1 ][ v0 ] // [ initial_crc ] size == 1 // [ initial_crc ] size == 2 // [ initial_crc ] size == 15 // [ initial_crc ] size == 16 (all in v0) const __m128i mask_low = _mm_add_epi8( vramp, _mm_set1_epi8((char)(size - 16))); MASK_LH(initial_crc, mask_low, *v0, *v1); if (size2 <= 16) { // There are 1-16 bytes of input and it is all // in data0. Copy the input bytes to v3. If there // are fewer than 16 bytes, the low bytes in v3 // will be filled with zeros. That is, the input // bytes are stored to the same position as // (part of) initial_crc is in v0. MASK_L(data0, mask_end, v3); } else { // There are 2-16 bytes of input but not all bytes // are in data0. const __m128i data1 = _mm_load_si128(aligned_buf); // Collect the 2-16 input bytes from data0 and data1 // to v2 and v3, and bitwise-xor them with the // low bits of initial_crc in v0. Note that the // the second xor is below this else-block as it // is shared with the other branch. MASK_H(data0, mask_end, v2); MASK_L(data1, mask_end, v3); *v0 = _mm_xor_si128(*v0, v2); } *v0 = _mm_xor_si128(*v0, v3); *v1 = _mm_alignr_epi8(*v1, *v0, 8); } else #endif { // There is more than 16 bytes of input. const __m128i data1 = _mm_load_si128(aligned_buf); const __m128i *end = (const __m128i*)( (const char *)aligned_buf - 16 + size2); aligned_buf++; MASK_LH(initial_crc, mask_start, *v0, *v1); *v0 = _mm_xor_si128(*v0, data0); *v1 = _mm_xor_si128(*v1, data1); while (aligned_buf < end) { *v1 = _mm_xor_si128(*v1, _mm_clmulepi64_si128( *v0, vfold16, 0x00)); *v0 = _mm_xor_si128(*v1, _mm_clmulepi64_si128( *v0, vfold16, 0x11)); *v1 = _mm_load_si128(aligned_buf++); } if (aligned_buf != end) { MASK_H(*v0, mask_end, v2); MASK_L(*v0, mask_end, *v0); MASK_L(*v1, mask_end, v3); *v1 = _mm_or_si128(v2, v3); } *v1 = _mm_xor_si128(*v1, _mm_clmulepi64_si128( *v0, vfold16, 0x00)); *v0 = _mm_xor_si128(*v1, _mm_clmulepi64_si128( *v0, vfold16, 0x11)); *v1 = _mm_srli_si128(*v0, 8); } } ///////////////////// // x86 CLMUL CRC32 // ///////////////////// /* // These functions were used to generate the constants // at the top of crc32_arch_optimized(). static uint64_t calc_lo(uint64_t p, uint64_t a, int n) { uint64_t b = 0; int i; for (i = 0; i < n; i++) { b = b >> 1 | (a & 1) << (n - 1); a = (a >> 1) ^ ((0 - (a & 1)) & p); } return b; } // same as ~crc(&a, sizeof(a), ~0) static uint64_t calc_hi(uint64_t p, uint64_t a, int n) { int i; for (i = 0; i < n; i++) a = (a >> 1) ^ ((0 - (a & 1)) & p); return a; } */ #ifdef BUILDING_CRC32_CLMUL crc_attr_target crc_attr_no_sanitize_address static uint32_t crc32_arch_optimized(const uint8_t *buf, size_t size, uint32_t crc) { #ifndef CRC_USE_GENERIC_FOR_SMALL_INPUTS // The code assumes that there is at least one byte of input. if (size == 0) return crc; #endif // uint32_t poly = 0xedb88320; const int64_t p = 0x1db710640; // p << 1 const int64_t mu = 0x1f7011641; // calc_lo(p, p, 32) << 1 | 1 const int64_t k5 = 0x163cd6124; // calc_hi(p, p, 32) << 1 const int64_t k4 = 0x0ccaa009e; // calc_hi(p, p, 64) << 1 const int64_t k3 = 0x1751997d0; // calc_hi(p, p, 128) << 1 const __m128i vfold4 = _mm_set_epi64x(mu, p); const __m128i vfold8 = _mm_set_epi64x(0, k5); const __m128i vfold16 = _mm_set_epi64x(k4, k3); __m128i v0, v1, v2; crc_simd_body(buf, size, &v0, &v1, vfold16, _mm_cvtsi32_si128((int32_t)~crc)); v1 = _mm_xor_si128( _mm_clmulepi64_si128(v0, vfold16, 0x10), v1); // xxx0 v2 = _mm_shuffle_epi32(v1, 0xe7); // 0xx0 v0 = _mm_slli_epi64(v1, 32); // [0] v0 = _mm_clmulepi64_si128(v0, vfold8, 0x00); v0 = _mm_xor_si128(v0, v2); // [1] [2] v2 = _mm_clmulepi64_si128(v0, vfold4, 0x10); v2 = _mm_clmulepi64_si128(v2, vfold4, 0x00); v0 = _mm_xor_si128(v0, v2); // [2] return ~(uint32_t)_mm_extract_epi32(v0, 2); } #endif // BUILDING_CRC32_CLMUL ///////////////////// // x86 CLMUL CRC64 // ///////////////////// /* // These functions were used to generate the constants // at the top of crc64_arch_optimized(). static uint64_t calc_lo(uint64_t poly) { uint64_t a = poly; uint64_t b = 0; for (unsigned i = 0; i < 64; ++i) { b = (b >> 1) | (a << 63); a = (a >> 1) ^ (a & 1 ? poly : 0); } return b; } static uint64_t calc_hi(uint64_t poly, uint64_t a) { for (unsigned i = 0; i < 64; ++i) a = (a >> 1) ^ (a & 1 ? poly : 0); return a; } */ #ifdef BUILDING_CRC64_CLMUL // MSVC (VS2015 - VS2022) produces bad 32-bit x86 code from the CLMUL CRC // code when optimizations are enabled (release build). According to the bug // report, the ebx register is corrupted and the calculated result is wrong. // Trying to workaround the problem with "__asm mov ebx, ebx" didn't help. // The following pragma works and performance is still good. x86-64 builds // and CRC32 CLMUL aren't affected by this problem. The problem does not // happen in crc_simd_body() either (which is shared with CRC32 CLMUL anyway). // // NOTE: Another pragma after crc64_arch_optimized() restores // the optimizations. If the #if condition here is updated, // the other one must be updated too. #if defined(_MSC_VER) && !defined(__INTEL_COMPILER) && !defined(__clang__) \ && defined(_M_IX86) # pragma optimize("g", off) #endif crc_attr_target crc_attr_no_sanitize_address static uint64_t crc64_arch_optimized(const uint8_t *buf, size_t size, uint64_t crc) { #ifndef CRC_USE_GENERIC_FOR_SMALL_INPUTS // The code assumes that there is at least one byte of input. if (size == 0) return crc; #endif // const uint64_t poly = 0xc96c5795d7870f42; // CRC polynomial const uint64_t p = 0x92d8af2baf0e1e85; // (poly << 1) | 1 const uint64_t mu = 0x9c3e466c172963d5; // (calc_lo(poly) << 1) | 1 const uint64_t k2 = 0xdabe95afc7875f40; // calc_hi(poly, 1) const uint64_t k1 = 0xe05dd497ca393ae4; // calc_hi(poly, k2) const __m128i vfold8 = _mm_set_epi64x((int64_t)p, (int64_t)mu); const __m128i vfold16 = _mm_set_epi64x((int64_t)k2, (int64_t)k1); __m128i v0, v1, v2; #if defined(__i386__) || defined(_M_IX86) crc_simd_body(buf, size, &v0, &v1, vfold16, _mm_set_epi64x(0, (int64_t)~crc)); #else // GCC and Clang would produce good code with _mm_set_epi64x // but MSVC needs _mm_cvtsi64_si128 on x86-64. crc_simd_body(buf, size, &v0, &v1, vfold16, _mm_cvtsi64_si128((int64_t)~crc)); #endif v1 = _mm_xor_si128(_mm_clmulepi64_si128(v0, vfold16, 0x10), v1); v0 = _mm_clmulepi64_si128(v1, vfold8, 0x00); v2 = _mm_clmulepi64_si128(v0, vfold8, 0x10); v0 = _mm_xor_si128(_mm_xor_si128(v1, _mm_slli_si128(v0, 8)), v2); #if defined(__i386__) || defined(_M_IX86) return ~(((uint64_t)(uint32_t)_mm_extract_epi32(v0, 3) << 32) | (uint64_t)(uint32_t)_mm_extract_epi32(v0, 2)); #else return ~(uint64_t)_mm_extract_epi64(v0, 1); #endif } #if defined(_MSC_VER) && !defined(__INTEL_COMPILER) && !defined(__clang__) \ && defined(_M_IX86) # pragma optimize("", on) #endif #endif // BUILDING_CRC64_CLMUL // is_arch_extension_supported() must be inlined in this header file because // the ifunc resolver function may not support calling a function in another // translation unit. Depending on compiler-toolchain and flags, a call to // a function defined in another translation unit could result in a // reference to the PLT, which is unsafe to do in an ifunc resolver. The // ifunc resolver runs very early when loading a shared library, so the PLT // entries may not be setup at that time. Inlining this function duplicates // the function body in crc32_resolve() and crc64_resolve(), but this is // acceptable because the function results in very few instructions. static inline bool is_arch_extension_supported(void) { int success = 1; uint32_t r[4]; // eax, ebx, ecx, edx #if defined(_MSC_VER) // This needs with MSVC. ICC has it as a built-in // on all platforms. __cpuid(r, 1); #elif defined(HAVE_CPUID_H) // Compared to just using __asm__ to run CPUID, this also checks // that CPUID is supported and saves and restores ebx as that is // needed with GCC < 5 with position-independent code (PIC). success = __get_cpuid(1, &r[0], &r[1], &r[2], &r[3]); #else // Just a fallback that shouldn't be needed. __asm__("cpuid\n\t" : "=a"(r[0]), "=b"(r[1]), "=c"(r[2]), "=d"(r[3]) : "a"(1), "c"(0)); #endif // Returns true if these are supported: // CLMUL (bit 1 in ecx) // SSSE3 (bit 9 in ecx) // SSE4.1 (bit 19 in ecx) const uint32_t ecx_mask = (1 << 1) | (1 << 9) | (1 << 19); return success && (r[2] & ecx_mask) == ecx_mask; // Alternative methods that weren't used: // - ICC's _may_i_use_cpu_feature: the other methods should work too. // - GCC >= 6 / Clang / ICX __builtin_cpu_supports("pclmul") // // CPUID decding is needed with MSVC anyway and older GCC. This keeps // the feature checks in the build system simpler too. The nice thing // about __builtin_cpu_supports would be that it generates very short // code as is it only reads a variable set at startup but a few bytes // doesn't matter here. }