// SPDX-License-Identifier: 0BSD /////////////////////////////////////////////////////////////////////////////// // /// \file range_decoder.h /// \brief Range Decoder /// // Authors: Igor Pavlov // Lasse Collin // /////////////////////////////////////////////////////////////////////////////// #ifndef LZMA_RANGE_DECODER_H #define LZMA_RANGE_DECODER_H #include "range_common.h" // Negative RC_BIT_MODEL_TOTAL but the lowest RC_MOVE_BITS are flipped. // This is useful for updating probability variables in branchless decoding: // // uint32_t decoded_bit = ...; // probability tmp = RC_BIT_MODEL_OFFSET; // tmp &= decoded_bit - 1; // prob -= (prob + tmp) >> RC_MOVE_BITS; #define RC_BIT_MODEL_OFFSET \ ((UINT32_C(1) << RC_MOVE_BITS) - 1 - RC_BIT_MODEL_TOTAL) typedef struct { uint32_t range; uint32_t code; uint32_t init_bytes_left; } lzma_range_decoder; /// Reads the first five bytes to initialize the range decoder. static inline lzma_ret rc_read_init(lzma_range_decoder *rc, const uint8_t *restrict in, size_t *restrict in_pos, size_t in_size) { while (rc->init_bytes_left > 0) { if (*in_pos == in_size) return LZMA_OK; // The first byte is always 0x00. It could have been omitted // in LZMA2 but it wasn't, so one byte is wasted in every // LZMA2 chunk. if (rc->init_bytes_left == 5 && in[*in_pos] != 0x00) return LZMA_DATA_ERROR; rc->code = (rc->code << 8) | in[*in_pos]; ++*in_pos; --rc->init_bytes_left; } return LZMA_STREAM_END; } /// Makes local copies of range decoder and *in_pos variables. Doing this /// improves speed significantly. The range decoder macros expect also /// variables 'in' and 'in_size' to be defined. #define rc_to_local(range_decoder, in_pos, fast_mode_in_required) \ lzma_range_decoder rc = range_decoder; \ const uint8_t *rc_in_ptr = in + (in_pos); \ const uint8_t *rc_in_end = in + in_size; \ const uint8_t *rc_in_fast_end \ = (rc_in_end - rc_in_ptr) <= (fast_mode_in_required) \ ? rc_in_ptr \ : rc_in_end - (fast_mode_in_required); \ uint32_t rc_bound /// Evaluates to true if there is enough input remaining to use fast mode. #define rc_is_fast_allowed() (rc_in_ptr < rc_in_fast_end) /// Stores the local copes back to the range decoder structure. #define rc_from_local(range_decoder, in_pos) \ do { \ range_decoder = rc; \ in_pos = (size_t)(rc_in_ptr - in); \ } while (0) /// Resets the range decoder structure. #define rc_reset(range_decoder) \ do { \ (range_decoder).range = UINT32_MAX; \ (range_decoder).code = 0; \ (range_decoder).init_bytes_left = 5; \ } while (0) /// When decoding has been properly finished, rc.code is always zero unless /// the input stream is corrupt. So checking this can catch some corrupt /// files especially if they don't have any other integrity check. #define rc_is_finished(range_decoder) \ ((range_decoder).code == 0) // Read the next input byte if needed. #define rc_normalize() \ do { \ if (rc.range < RC_TOP_VALUE) { \ rc.range <<= RC_SHIFT_BITS; \ rc.code = (rc.code << RC_SHIFT_BITS) | *rc_in_ptr++; \ } \ } while (0) /// If more input is needed but there is /// no more input available, "goto out" is used to jump out of the main /// decoder loop. The "_safe" macros are used in the Resumable decoder /// mode in order to save the sequence to continue decoding from that /// point later. #define rc_normalize_safe(seq) \ do { \ if (rc.range < RC_TOP_VALUE) { \ if (rc_in_ptr == rc_in_end) { \ coder->sequence = seq; \ goto out; \ } \ rc.range <<= RC_SHIFT_BITS; \ rc.code = (rc.code << RC_SHIFT_BITS) | *rc_in_ptr++; \ } \ } while (0) /// Start decoding a bit. This must be used together with rc_update_0() /// and rc_update_1(): /// /// rc_if_0(prob) { /// rc_update_0(prob); /// // Do something /// } else { /// rc_update_1(prob); /// // Do something else /// } /// #define rc_if_0(prob) \ rc_normalize(); \ rc_bound = (rc.range >> RC_BIT_MODEL_TOTAL_BITS) * (prob); \ if (rc.code < rc_bound) #define rc_if_0_safe(prob, seq) \ rc_normalize_safe(seq); \ rc_bound = (rc.range >> RC_BIT_MODEL_TOTAL_BITS) * (prob); \ if (rc.code < rc_bound) /// Update the range decoder state and the used probability variable to /// match a decoded bit of 0. /// /// The x86-64 assemly uses the commented method but it seems that, /// at least on x86-64, the first version is slightly faster as C code. #define rc_update_0(prob) \ do { \ rc.range = rc_bound; \ prob += (RC_BIT_MODEL_TOTAL - (prob)) >> RC_MOVE_BITS; \ /* prob -= ((prob) + RC_BIT_MODEL_OFFSET) >> RC_MOVE_BITS; */ \ } while (0) /// Update the range decoder state and the used probability variable to /// match a decoded bit of 1. #define rc_update_1(prob) \ do { \ rc.range -= rc_bound; \ rc.code -= rc_bound; \ prob -= (prob) >> RC_MOVE_BITS; \ } while (0) /// Decodes one bit and runs action0 or action1 depending on the decoded bit. /// This macro is used as the last step in bittree reverse decoders since /// those don't use "symbol" for anything else than indexing the probability /// arrays. #define rc_bit_last(prob, action0, action1) \ do { \ rc_if_0(prob) { \ rc_update_0(prob); \ action0; \ } else { \ rc_update_1(prob); \ action1; \ } \ } while (0) #define rc_bit_last_safe(prob, action0, action1, seq) \ do { \ rc_if_0_safe(prob, seq) { \ rc_update_0(prob); \ action0; \ } else { \ rc_update_1(prob); \ action1; \ } \ } while (0) /// Decodes one bit, updates "symbol", and runs action0 or action1 depending /// on the decoded bit. #define rc_bit(prob, action0, action1) \ rc_bit_last(prob, \ symbol <<= 1; action0, \ symbol = (symbol << 1) + 1; action1); #define rc_bit_safe(prob, action0, action1, seq) \ rc_bit_last_safe(prob, \ symbol <<= 1; action0, \ symbol = (symbol << 1) + 1; action1, \ seq); // Unroll fixed-sized bittree decoding. // // A compile-time constant in final_add can be used to get rid of the high bit // from symbol that is used for the array indexing (1U << bittree_bits). // final_add may also be used to add offset to the result (LZMA length // decoder does that). // // The reason to have final_add here is that in the asm code the addition // can be done for free: in x86-64 there is SBB instruction with -1 as // the immediate value, and final_add is combined with that value. #define rc_bittree_bit(prob) \ rc_bit(prob, , ) #define rc_bittree3(probs, final_add) \ do { \ symbol = 1; \ rc_bittree_bit(probs[symbol]); \ rc_bittree_bit(probs[symbol]); \ rc_bittree_bit(probs[symbol]); \ symbol += (uint32_t)(final_add); \ } while (0) #define rc_bittree6(probs, final_add) \ do { \ symbol = 1; \ rc_bittree_bit(probs[symbol]); \ rc_bittree_bit(probs[symbol]); \ rc_bittree_bit(probs[symbol]); \ rc_bittree_bit(probs[symbol]); \ rc_bittree_bit(probs[symbol]); \ rc_bittree_bit(probs[symbol]); \ symbol += (uint32_t)(final_add); \ } while (0) #define rc_bittree8(probs, final_add) \ do { \ symbol = 1; \ rc_bittree_bit(probs[symbol]); \ rc_bittree_bit(probs[symbol]); \ rc_bittree_bit(probs[symbol]); \ rc_bittree_bit(probs[symbol]); \ rc_bittree_bit(probs[symbol]); \ rc_bittree_bit(probs[symbol]); \ rc_bittree_bit(probs[symbol]); \ rc_bittree_bit(probs[symbol]); \ symbol += (uint32_t)(final_add); \ } while (0) // Fixed-sized reverse bittree #define rc_bittree_rev4(probs) \ do { \ symbol = 0; \ rc_bit_last(probs[symbol + 1], , symbol += 1); \ rc_bit_last(probs[symbol + 2], , symbol += 2); \ rc_bit_last(probs[symbol + 4], , symbol += 4); \ rc_bit_last(probs[symbol + 8], , symbol += 8); \ } while (0) // Decode one bit from variable-sized reverse bittree. // The loop is done in the code that uses this macro. #define rc_bit_add_if_1(probs, dest, value_to_add_if_1) \ rc_bit(probs[symbol], \ , \ dest += value_to_add_if_1); // Matched literal #define decode_with_match_bit \ t_match_byte <<= 1; \ t_match_bit = t_match_byte & t_offset; \ t_subcoder_index = t_offset + t_match_bit + symbol; \ rc_bit(probs[t_subcoder_index], \ t_offset &= ~t_match_bit, \ t_offset &= t_match_bit) #define rc_matched_literal(probs_base_var, match_byte) \ do { \ uint32_t t_match_byte = (match_byte); \ uint32_t t_match_bit; \ uint32_t t_subcoder_index; \ uint32_t t_offset = 0x100; \ symbol = 1; \ decode_with_match_bit; \ decode_with_match_bit; \ decode_with_match_bit; \ decode_with_match_bit; \ decode_with_match_bit; \ decode_with_match_bit; \ decode_with_match_bit; \ decode_with_match_bit; \ } while (0) /// Decode a bit without using a probability. // // NOTE: GCC 13 and Clang/LLVM 16 can, at least on x86-64, optimize the bound // calculation to use an arithmetic right shift so there's no need to provide // the alternative code which, according to C99/C11/C23 6.3.1.3-p3 isn't // perfectly portable: rc_bound = (uint32_t)((int32_t)rc.code >> 31); #define rc_direct(dest, count_var) \ do { \ dest = (dest << 1) + 1; \ rc_normalize(); \ rc.range >>= 1; \ rc.code -= rc.range; \ rc_bound = UINT32_C(0) - (rc.code >> 31); \ dest += rc_bound; \ rc.code += rc.range & rc_bound; \ } while (--count_var > 0) #define rc_direct_safe(dest, count_var, seq) \ do { \ rc_normalize_safe(seq); \ rc.range >>= 1; \ rc.code -= rc.range; \ rc_bound = UINT32_C(0) - (rc.code >> 31); \ rc.code += rc.range & rc_bound; \ dest = (dest << 1) + (rc_bound + 1); \ } while (--count_var > 0) #endif