/////////////////////////////////////////////////////////////////////////////// // /// \file lz_decoder.c /// \brief LZ out window // // Copyright (C) 1999-2006 Igor Pavlov // Copyright (C) 2007 Lasse Collin // // This library is free software; you can redistribute it and/or // modify it under the terms of the GNU Lesser General Public // License as published by the Free Software Foundation; either // version 2.1 of the License, or (at your option) any later version. // // This library is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU // Lesser General Public License for more details. // /////////////////////////////////////////////////////////////////////////////// #include "lz_decoder.h" /// Minimum size of allocated dictionary #define DICT_SIZE_MIN 8192 /// When there is less than this amount of data available for decoding, /// it is moved to the temporary buffer which /// - protects from reads past the end of the buffer; and /// - stored the incomplete data between lzma_code() calls. /// /// \note TEMP_LIMIT must be at least as much as /// REQUIRED_IN_BUFFER_SIZE defined in lzma_decoder.c. #define TEMP_LIMIT 32 // lzma_lz_decoder.dict[] must be three times the size of TEMP_LIMIT. // 2 * TEMP_LIMIT is used for the actual data, and the third TEMP_LIMIT // bytes is needed for safety to allow decode_dummy() in lzma_decoder.c // to read past end of the buffer. This way it should be both fast and simple. #if LZMA_BUFFER_SIZE < 3 * TEMP_LIMIT # error LZMA_BUFFER_SIZE < 3 * TEMP_LIMIT #endif struct lzma_coder_s { lzma_next_coder next; lzma_lz_decoder lz; // There are more members in this structure but they are not // visible in LZ coder. }; /// - Copy as much data as possible from lz->dict[] to out[]. /// - Update *out_pos, lz->start, and lz->end accordingly. /// - Wrap lz-pos to the beginning of lz->dict[] if there is a danger that /// it may go past the end of the buffer (lz->pos >= lz->must_flush_pos). static inline bool flush(lzma_lz_decoder *restrict lz, uint8_t *restrict out, size_t *restrict out_pos, size_t out_size) { // Flush uncompressed data from the history buffer to // the output buffer. This is done in two phases. assert(lz->start <= lz->end); // Flush if pos < start < end. if (lz->pos < lz->start && lz->start < lz->end) { bufcpy(lz->dict, &lz->start, lz->end, out, out_pos, out_size); // If we reached end of the data in history buffer, // wrap to the beginning. if (lz->start == lz->end) lz->start = 0; } // Flush if start start < pos <= end. This is not as `else' for // previous `if' because the previous one may make this one true. if (lz->start < lz->pos) { bufcpy(lz->dict, &lz->start, lz->pos, out, out_pos, out_size); if (lz->pos >= lz->must_flush_pos) { // Wrap the flushing position if we have // flushed the whole history buffer. if (lz->pos == lz->start) lz->start = 0; // Wrap the write position and store to lz.end // how much there is new data available. lz->end = lz->pos; lz->pos = 0; lz->is_full = true; } } assert(lz->pos < lz->must_flush_pos); return *out_pos == out_size; } /// Calculate safe value for lz->limit. If no safe value can be found, /// set lz->limit to zero. When flushing, only as little data will be /// decoded as is needed to fill the output buffer (lowers both latency /// and throughput). /// /// \return true if there is no space for new uncompressed data. /// static inline bool set_limit(lzma_lz_decoder *lz, size_t out_avail, bool flushing) { // Set the limit so that writing to dict[limit + match_max_len - 1] // doesn't overwrite any unflushed data and doesn't write past the // end of the dict buffer. if (lz->start <= lz->pos) { // We can fill the buffer from pos till the end // of the dict buffer. lz->limit = lz->must_flush_pos; } else if (lz->pos + lz->match_max_len < lz->start) { // There's some unflushed data between pos and end of the // buffer. Limit so that we don't overwrite the unflushed data. lz->limit = lz->start - lz->match_max_len; } else { // Buffer is too full. lz->limit = 0; return true; } // Finetune the limit a bit if it isn't zero. assert(lz->limit > lz->pos); const size_t dict_avail = lz->limit - lz->pos; if (lz->uncompressed_size < dict_avail) { // Finishing a stream that doesn't have // an end of stream marker. lz->limit = lz->pos + lz->uncompressed_size; } else if (flushing && out_avail < dict_avail) { // Flushing enabled, decoding only as little as needed to // fill the out buffer (if there's enough input, of course). lz->limit = lz->pos + out_avail; } return lz->limit == lz->pos; } /// Takes care of wrapping the data into temporary buffer when needed, /// and calls the actual decoder. /// /// \return true if error occurred /// static inline bool call_process(lzma_coder *restrict coder, const uint8_t *restrict in, size_t *restrict in_pos, size_t in_size) { // It would be nice and simple if we could just give in[] to the // decoder, but the requirement of zlib-like API forces us to be // able to make *in_pos == in_size whenever there is enough output // space. If needed, we will append a few bytes from in[] to // a temporary buffer and decode enough to reach the part that // was copied from in[]. Then we can continue with the real in[]. bool error; const size_t dict_old_pos = coder->lz.pos; const size_t in_avail = in_size - *in_pos; if (coder->lz.temp_size + in_avail < 2 * TEMP_LIMIT) { // Copy all the available input from in[] to temp[]. memcpy(coder->lz.temp + coder->lz.temp_size, in + *in_pos, in_avail); coder->lz.temp_size += in_avail; *in_pos += in_avail; assert(*in_pos == in_size); // Decode as much as possible. size_t temp_used = 0; error = coder->lz.process(coder, coder->lz.temp, &temp_used, coder->lz.temp_size, true); assert(temp_used <= coder->lz.temp_size); // Move the remaining data to the beginning of temp[]. coder->lz.temp_size -= temp_used; memmove(coder->lz.temp, coder->lz.temp + temp_used, coder->lz.temp_size); } else if (coder->lz.temp_size > 0) { // Fill temp[] unless it is already full because we aren't // the last filter in the chain. size_t copy_size = 0; if (coder->lz.temp_size < 2 * TEMP_LIMIT) { assert(*in_pos < in_size); copy_size = 2 * TEMP_LIMIT - coder->lz.temp_size; memcpy(coder->lz.temp + coder->lz.temp_size, in + *in_pos, copy_size); // NOTE: We don't update lz.temp_size or *in_pos yet. } size_t temp_used = 0; error = coder->lz.process(coder, coder->lz.temp, &temp_used, coder->lz.temp_size + copy_size, false); if (temp_used < coder->lz.temp_size) { // Only very little input data was consumed. Move // the unprocessed data to the beginning temp[]. coder->lz.temp_size += copy_size - temp_used; memmove(coder->lz.temp, coder->lz.temp + temp_used, coder->lz.temp_size); *in_pos += copy_size; assert(*in_pos <= in_size); } else { // We were able to decode so much data that next time // we can decode directly from in[]. That is, we can // consider temp[] to be empty now. *in_pos += temp_used - coder->lz.temp_size; coder->lz.temp_size = 0; assert(*in_pos <= in_size); } } else { // Decode directly from in[]. error = coder->lz.process(coder, in, in_pos, in_size, false); assert(*in_pos <= in_size); } assert(coder->lz.pos >= dict_old_pos); if (coder->lz.uncompressed_size != LZMA_VLI_VALUE_UNKNOWN) { // Update uncompressed size. coder->lz.uncompressed_size -= coder->lz.pos - dict_old_pos; // Check that End of Payload Marker hasn't been detected // since it must not be present because uncompressed size // is known. if (coder->lz.eopm_detected) error = true; } return error; } static lzma_ret decode_buffer(lzma_coder *coder, const uint8_t *restrict in, size_t *restrict in_pos, size_t in_size, uint8_t *restrict out, size_t *restrict out_pos, size_t out_size, bool flushing) { bool stop = false; while (true) { // Flush from coder->lz.dict to out[]. flush(&coder->lz, out, out_pos, out_size); // All done? if (*out_pos == out_size || stop || coder->lz.eopm_detected || coder->lz.uncompressed_size == 0) break; // Set write limit in the dictionary. if (set_limit(&coder->lz, out_size - *out_pos, flushing)) break; // Decode more data. if (call_process(coder, in, in_pos, in_size)) return LZMA_DATA_ERROR; // Set stop to true if we must not call call_process() again // during this function call. // FIXME: Can this make the loop exist too early? It wouldn't // cause data corruption so not a critical problem. It can // happen if dictionary gets full and lz.temp still contains // a few bytes data that we could decode right now. if (*in_pos == in_size && coder->lz.temp_size <= TEMP_LIMIT && coder->lz.pos < coder->lz.limit) stop = true; } // If we have decoded everything (EOPM detected or uncompressed_size // bytes were processed) to the history buffer, and also flushed // everything from the history buffer, our job is done. if ((coder->lz.eopm_detected || coder->lz.uncompressed_size == 0) && coder->lz.start == coder->lz.pos) return LZMA_STREAM_END; return LZMA_OK; } extern lzma_ret lzma_lz_decode(lzma_coder *coder, lzma_allocator *allocator lzma_attribute((unused)), const uint8_t *restrict in, size_t *restrict in_pos, size_t in_size, uint8_t *restrict out, size_t *restrict out_pos, size_t out_size, lzma_action action) { if (coder->next.code == NULL) { const lzma_ret ret = decode_buffer(coder, in, in_pos, in_size, out, out_pos, out_size, action == LZMA_SYNC_FLUSH); if (*out_pos == out_size || ret == LZMA_STREAM_END) { // Unread to make coder->temp[] empty. This is easy, // because we know that all the data currently in // coder->temp[] has been copied form in[] during this // call to the decoder. // // If we didn't do this, we could have data left in // coder->temp[] when end of stream is reached. That // data could be left there from *previous* call to // the decoder; in that case we wouldn't know where // to put that data. assert(*in_pos >= coder->lz.temp_size); *in_pos -= coder->lz.temp_size; coder->lz.temp_size = 0; } return ret; } // We aren't the last coder in the chain, we need to decode // our input to a temporary buffer. const bool flushing = action == LZMA_SYNC_FLUSH; while (*out_pos < out_size) { if (!coder->lz.next_finished && coder->lz.temp_size < LZMA_BUFFER_SIZE) { const lzma_ret ret = coder->next.code( coder->next.coder, allocator, in, in_pos, in_size, coder->lz.temp, &coder->lz.temp_size, LZMA_BUFFER_SIZE, action); if (ret == LZMA_STREAM_END) coder->lz.next_finished = true; else if (coder->lz.temp_size < LZMA_BUFFER_SIZE || ret != LZMA_OK) return ret; } if (coder->lz.this_finished) { if (coder->lz.temp_size != 0) return LZMA_DATA_ERROR; if (coder->lz.next_finished) return LZMA_STREAM_END; return LZMA_OK; } size_t dummy = 0; const lzma_ret ret = decode_buffer(coder, NULL, &dummy, 0, out, out_pos, out_size, flushing); if (ret == LZMA_STREAM_END) coder->lz.this_finished = true; else if (ret != LZMA_OK) return ret; else if (coder->lz.next_finished && *out_pos < out_size) return LZMA_DATA_ERROR; } return LZMA_OK; } /// \brief Initializes LZ part of the LZMA decoder or Inflate /// /// \param history_size Number of bytes the LZ out window is /// supposed keep available from the output /// history. /// \param match_max_len Number of bytes a single decoding loop /// can advance the write position (lz->pos) /// in the history buffer (lz->dict). /// /// \note This function is called by LZMA decoder and Inflate init()s. /// It's up to those functions allocate *lz and initialize it /// with LZMA_LZ_DECODER_INIT. extern lzma_ret lzma_lz_decoder_reset(lzma_lz_decoder *lz, lzma_allocator *allocator, bool (*process)(lzma_coder *restrict coder, const uint8_t *restrict in, size_t *restrict in_pos, size_t in_size, bool has_safe_buffer), size_t history_size, size_t match_max_len) { // Known uncompressed size is used only with LZMA_Alone files so we // set it always to unknown by default. lz->uncompressed_size = LZMA_VLI_VALUE_UNKNOWN; // Limit the history size to roughly sane values. This is primarily // to prevent integer overflows. if (history_size > UINT32_MAX / 2) return LZMA_HEADER_ERROR; // Store the value actually requested. We use it for sanity checks // when repeating data from the history buffer. lz->requested_size = history_size; // Avoid tiny history buffer sizes for performance reasons. // TODO: Test if this actually helps... if (history_size < DICT_SIZE_MIN) history_size = DICT_SIZE_MIN; // The real size of the history buffer is a bit bigger than // requested by our caller. This allows us to do some optimizations, // which help not only speed but simplicity of the code; specifically, // we can make sure that there is always at least match_max_len // bytes immediatelly available for writing without a need to wrap // the history buffer. const size_t dict_real_size = history_size + 2 * match_max_len + 1; // Reallocate memory if needed. if (history_size != lz->size || match_max_len != lz->match_max_len) { // Destroy the old buffer. lzma_lz_decoder_end(lz, allocator); lz->size = history_size; lz->match_max_len = match_max_len; lz->must_flush_pos = history_size + match_max_len + 1; lz->dict = lzma_alloc(dict_real_size, allocator); if (lz->dict == NULL) return LZMA_MEM_ERROR; } // Reset the variables so that lz_get_byte(lz, 0) will return '\0'. lz->pos = 0; lz->start = 0; lz->end = dict_real_size; lz->dict[dict_real_size - 1] = 0; lz->is_full = false; lz->eopm_detected = false; lz->next_finished = false; lz->this_finished = false; lz->temp_size = 0; // Clean up the temporary buffer to make it very sure that there are // no information leaks when multiple steams are decoded with the // same decoder structures. memzero(lz->temp, LZMA_BUFFER_SIZE); // Set the process function pointer. lz->process = process; return LZMA_OK; } extern void lzma_lz_decoder_end(lzma_lz_decoder *lz, lzma_allocator *allocator) { lzma_free(lz->dict, allocator); lz->dict = NULL; lz->size = 0; lz->match_max_len = 0; return; }