/////////////////////////////////////////////////////////////////////////////// // /// \file block_encoder.c /// \brief Encodes .lzma Blocks // // Copyright (C) 2007 Lasse Collin // // This library is free software; you can redistribute it and/or // modify it under the terms of the GNU Lesser General Public // License as published by the Free Software Foundation; either // version 2.1 of the License, or (at your option) any later version. // // This library is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU // Lesser General Public License for more details. // /////////////////////////////////////////////////////////////////////////////// #include "block_encoder.h" #include "block_private.h" #include "raw_encoder.h" #include "check.h" struct lzma_coder_s { /// The filters in the chain; initialized with lzma_raw_decoder_init(). lzma_next_coder next; /// Encoding options; we also write Total Size, Compressed Size, and /// Uncompressed Size back to this structure when the encoding has /// been finished. lzma_options_block *options; enum { SEQ_CODE, SEQ_PADDING, SEQ_CHECK, } sequence; /// Compressed Size calculated while encoding lzma_vli compressed_size; /// Uncompressed Size calculated while encoding lzma_vli uncompressed_size; /// Position when writing out the Check field size_t check_pos; /// Check of the uncompressed data lzma_check check; }; static lzma_ret block_encode(lzma_coder *coder, lzma_allocator *allocator, const uint8_t *restrict in, size_t *restrict in_pos, size_t in_size, uint8_t *restrict out, size_t *restrict out_pos, size_t out_size, lzma_action action) { // Check that our amount of input stays in proper limits. if (coder->options->uncompressed_size != LZMA_VLI_VALUE_UNKNOWN) { if (action == LZMA_FINISH) { if (coder->options->uncompressed_size - coder->uncompressed_size != (lzma_vli)(in_size - *in_pos)) return LZMA_PROG_ERROR; } else { if (coder->options->uncompressed_size - coder->uncompressed_size < (lzma_vli)(in_size - *in_pos)) return LZMA_PROG_ERROR; } } else if (LZMA_VLI_VALUE_MAX - coder->uncompressed_size < (lzma_vli)(in_size - *in_pos)) { return LZMA_PROG_ERROR; } // Main loop while (*out_pos < out_size && (*in_pos < in_size || action != LZMA_RUN)) switch (coder->sequence) { case SEQ_CODE: { const size_t in_start = *in_pos; const size_t out_start = *out_pos; const lzma_ret ret = coder->next.code(coder->next.coder, allocator, in, in_pos, in_size, out, out_pos, out_size, action); const size_t in_used = *in_pos - in_start; const size_t out_used = *out_pos - out_start; // FIXME We must also check that Total Size doesn't get // too big. if (update_size(&coder->compressed_size, out_used, coder->options->compressed_size)) return LZMA_DATA_ERROR; // No need to check for overflow because we have already // checked it at the beginning of this function. coder->uncompressed_size += in_used; lzma_check_update(&coder->check, coder->options->check, in + in_start, in_used); if (ret != LZMA_STREAM_END || action == LZMA_SYNC_FLUSH) return ret; assert(*in_pos == in_size); coder->sequence = SEQ_PADDING; break; } case SEQ_PADDING: // Pad Compressed Data to a multiple of four bytes. if (coder->compressed_size & 3) { out[*out_pos] = 0x00; ++*out_pos; if (update_size(&coder->compressed_size, 1, coder->options->compressed_size)) return LZMA_DATA_ERROR; break; } // Compressed and Uncompressed Sizes are now at their final // values. Verify that they match the values given to us. if (!is_size_valid(coder->compressed_size, coder->options->compressed_size) || !is_size_valid(coder->uncompressed_size, coder->options->uncompressed_size)) return LZMA_DATA_ERROR; // Copy the values into coder->options. The caller // may use this information to construct Index. coder->options->compressed_size = coder->compressed_size; coder->options->uncompressed_size = coder->uncompressed_size; if (coder->options->check == LZMA_CHECK_NONE) return LZMA_STREAM_END; lzma_check_finish(&coder->check, coder->options->check); coder->sequence = SEQ_CHECK; // Fall through case SEQ_CHECK: out[*out_pos] = coder->check.buffer[coder->check_pos]; ++*out_pos; if (++coder->check_pos == lzma_check_sizes[coder->options->check]) return LZMA_STREAM_END; break; default: return LZMA_PROG_ERROR; } return LZMA_OK; } static void block_encoder_end(lzma_coder *coder, lzma_allocator *allocator) { lzma_next_coder_end(&coder->next, allocator); lzma_free(coder, allocator); return; } static lzma_ret block_encoder_init(lzma_next_coder *next, lzma_allocator *allocator, lzma_options_block *options) { // While lzma_block_total_size_get() is meant to calculate the Total // Size, it also validates the options excluding the filters. if (lzma_block_total_size_get(options) == 0) return LZMA_PROG_ERROR; // Allocate and initialize *next->coder if needed. if (next->coder == NULL) { next->coder = lzma_alloc(sizeof(lzma_coder), allocator); if (next->coder == NULL) return LZMA_MEM_ERROR; next->code = &block_encode; next->end = &block_encoder_end; next->coder->next = LZMA_NEXT_CODER_INIT; } // Basic initializations next->coder->sequence = SEQ_CODE; next->coder->options = options; next->coder->compressed_size = 0; next->coder->uncompressed_size = 0; // Initialize the check next->coder->check_pos = 0; return_if_error(lzma_check_init(&next->coder->check, options->check)); // Initialize the requested filters. return lzma_raw_encoder_init(&next->coder->next, allocator, options->filters); } extern lzma_ret lzma_block_encoder_init(lzma_next_coder *next, lzma_allocator *allocator, lzma_options_block *options) { lzma_next_coder_init(block_encoder_init, next, allocator, options); } extern LZMA_API lzma_ret lzma_block_encoder(lzma_stream *strm, lzma_options_block *options) { lzma_next_strm_init(strm, block_encoder_init, options); strm->internal->supported_actions[LZMA_RUN] = true; strm->internal->supported_actions[LZMA_FINISH] = true; return LZMA_OK; }