/** * \file lzma/vli.h * \brief Variable-length integer handling * * \author Copyright (C) 1999-2006 Igor Pavlov * \author Copyright (C) 2007 Lasse Collin * * This library is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2.1 of the License, or (at your option) any later version. * * This library is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. */ #ifndef LZMA_H_INTERNAL # error Never include this file directly. Use instead. #endif /** * \brief Maximum supported value of variable-length integer */ #define LZMA_VLI_VALUE_MAX (UINT64_MAX / 2) /** * \brief VLI value to denote that the value is unknown */ #define LZMA_VLI_VALUE_UNKNOWN UINT64_MAX /** * \brief Maximum supported length of variable length integers */ #define LZMA_VLI_BYTES_MAX 9 /** * \brief VLI constant suffix */ #define LZMA_VLI_C(n) UINT64_C(n) /** * \brief Variable-length integer type * * This will always be unsigned integer. Valid VLI values are in the range * [0, LZMA_VLI_VALUE_MAX]. Unknown value is indicated with * LZMA_VLI_VALUE_UNKNOWN, which is the maximum value of the underlaying * integer type (this feature is useful in several situations). * * In future, even if lzma_vli is typdefined to something else than uint64_t, * it is guaranteed that 2 * LZMA_VLI_VALUE_MAX will not overflow lzma_vli. * This simplifies integer overflow detection. */ typedef uint64_t lzma_vli; /** * \brief Simple macro to validate variable-length integer * * This is useful to test that application has given acceptable values * for example in the uncompressed_size and compressed_size variables. * * \return True if the integer is representable as VLI or if it * indicates unknown value. */ #define lzma_vli_is_valid(vli) \ ((vli) <= LZMA_VLI_VALUE_MAX || (vli) == LZMA_VLI_VALUE_UNKNOWN) /** * \brief Sets VLI to given value with error checking * * \param dest Target variable which must have type of lzma_vli. * \param src New value to be stored to dest. * \param limit Maximum allowed value for src. * * \return False on success, true on error. If an error occurred, * dest is left in undefined state (i.e. it's possible that * it will be different in newer liblzma versions). */ #define lzma_vli_set_lim(dest, src, limit) \ ((src) > (limit) || ((dest) = (src)) > (limit)) /** * \brief */ #define lzma_vli_add_lim(dest, src, limit) \ ((src) > (limit) || ((dest) += (src)) > (limit)) #define lzma_vli_add2_lim(dest, src1, src2, limit) \ (lzma_vli_add_lim(dest, src1, limit) \ || lzma_vli_add_lim(dest, src2, limit)) #define lzma_vli_add3_lim(dest, src1, src2, src3, limit) \ (lzma_vli_add_lim(dest, src1, limit) \ || lzma_vli_add_lim(dest, src2, limit) \ || lzma_vli_add_lim(dest, src3, limit)) #define lzma_vli_add4_lim(dest, src1, src2, src3, src4, limit) \ (lzma_vli_add_lim(dest, src1, limit) \ || lzma_vli_add_lim(dest, src2, limit) \ || lzma_vli_add_lim(dest, src3, limit) \ || lzma_vli_add_lim(dest, src4, limit)) #define lzma_vli_sum_lim(dest, src1, src2, limit) \ (lzma_vli_set_lim(dest, src1, limit) \ || lzma_vli_add_lim(dest, src2, limit)) #define lzma_vli_sum3_lim(dest, src1, src2, src3, limit) \ (lzma_vli_set_lim(dest, src1, limit) \ || lzma_vli_add_lim(dest, src2, limit) \ || lzma_vli_add_lim(dest, src3, limit)) #define lzma_vli_sum4_lim(dest, src1, src2, src3, src4, limit) \ (lzma_vli_set_lim(dest, src1, limit) \ || lzma_vli_add_lim(dest, src2, limit) \ || lzma_vli_add_lim(dest, src3, limit) \ || lzma_vli_add_lim(dest, src4, limit)) #define lzma_vli_set(dest, src) lzma_vli_set_lim(dest, src, LZMA_VLI_VALUE_MAX) #define lzma_vli_add(dest, src) lzma_vli_add_lim(dest, src, LZMA_VLI_VALUE_MAX) #define lzma_vli_add2(dest, src1, src2) \ lzma_vli_add2_lim(dest, src1, src2, LZMA_VLI_VALUE_MAX) #define lzma_vli_add3(dest, src1, src2, src3) \ lzma_vli_add3_lim(dest, src1, src2, src3, LZMA_VLI_VALUE_MAX) #define lzma_vli_add4(dest, src1, src2, src3, src4) \ lzma_vli_add4_lim(dest, src1, src2, src3, src4, LZMA_VLI_VALUE_MAX) #define lzma_vli_sum(dest, src1, src2) \ lzma_vli_sum_lim(dest, src1, src2, LZMA_VLI_VALUE_MAX) #define lzma_vli_sum3(dest, src1, src2, src3) \ lzma_vli_sum3_lim(dest, src1, src2, src3, LZMA_VLI_VALUE_MAX) #define lzma_vli_sum4(dest, src1, src2, src3, src4) \ lzma_vli_sum4_lim(dest, src1, src2, src3, src4, LZMA_VLI_VALUE_MAX) /** * \brief Encodes variable-length integer * * In the new .lzma format, most integers are encoded in variable-length * representation. This saves space when smaller values are more likely * than bigger values. * * The encoding scheme encodes seven bits to every byte, using minimum * number of bytes required to represent the given value. In other words, * it puts 7-63 bits into 1-9 bytes. This implementation limits the number * of bits used to 63, thus num must be at maximum of UINT64_MAX / 2. You * may use LZMA_VLI_VALUE_MAX for clarity. * * \param vli Integer to be encoded * \param vli_pos How many VLI-encoded bytes have already been written * out. When starting to encode a new integer, *vli_pos * must be set to zero. To use single-call encoding, * set vli_pos to NULL. * \param out Beginning of the output buffer * \param out_pos The next byte will be written to out[*out_pos]. * \param out_size Size of the out buffer; the first byte into * which no data is written to is out[out_size]. * * \return Slightly different return values are used in multi-call and * single-call modes. * * Multi-call (vli_pos != NULL): * - LZMA_OK: So far all OK, but the integer is not * completely written out yet. * - LZMA_STREAM_END: Integer successfully encoded. * - LZMA_PROG_ERROR: Arguments are not sane. This can be due * to no *out_pos == out_size; this function doesn't use * LZMA_BUF_ERROR. * * Single-call (vli_pos == NULL): * - LZMA_OK: Integer successfully encoded. * - LZMA_PROG_ERROR: Arguments are not sane. This can be due * to too little output space; this function doesn't use * LZMA_BUF_ERROR. */ extern lzma_ret lzma_vli_encode( lzma_vli vli, size_t *lzma_restrict vli_pos, uint8_t *lzma_restrict out, size_t *lzma_restrict out_pos, size_t out_size); /** * \brief Decodes variable-length integer * * \param vli Pointer to decoded integer. The decoder will * initialize it to zero when *vli_pos == 0, so * application isn't required to initialize *vli. * \param vli_pos How many bytes have already been decoded. When * starting to decode a new integer, *vli_pos must * be initialized to zero. To use single-call decoding, * set this to NULL. * \param in Beginning of the input buffer * \param in_pos The next byte will be read from in[*in_pos]. * \param in_size Size of the input buffer; the first byte that * won't be read is in[in_size]. * * \return Slightly different return values are used in multi-call and * single-call modes. * * Multi-call (vli_pos != NULL): * - LZMA_OK: So far all OK, but the integer is not * completely decoded yet. * - LZMA_STREAM_END: Integer successfully decoded. * - LZMA_DATA_ERROR: Integer is corrupt. * - LZMA_PROG_ERROR: Arguments are not sane. This can be * due to *in_pos == in_size; this function doesn't use * LZMA_BUF_ERROR. * * Single-call (vli_pos == NULL): * - LZMA_OK: Integer successfully decoded. * - LZMA_DATA_ERROR: Integer is corrupt. * - LZMA_PROG_ERROR: Arguments are not sane. This can be due to * too little input; this function doesn't use LZMA_BUF_ERROR. */ extern lzma_ret lzma_vli_decode(lzma_vli *lzma_restrict vli, size_t *lzma_restrict vli_pos, const uint8_t *lzma_restrict in, size_t *lzma_restrict in_pos, size_t in_size); /** * \brief Gets the number of bytes required to encode vli * * \return Number of bytes on success (1-9). If vli isn't valid, * zero is returned. */ extern uint32_t lzma_vli_size(lzma_vli vli);