/////////////////////////////////////////////////////////////////////////////// // /// \file subblock_encoder.c /// \brief Encoder of the Subblock filter // // Copyright (C) 2007 Lasse Collin // // This library is free software; you can redistribute it and/or // modify it under the terms of the GNU Lesser General Public // License as published by the Free Software Foundation; either // version 2.1 of the License, or (at your option) any later version. // // This library is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU // Lesser General Public License for more details. // /////////////////////////////////////////////////////////////////////////////// #include "subblock_encoder.h" #include "raw_encoder.h" #define REPEAT_COUNT_MAX (1U << 28) /// Number of bytes the data chunk being repeated must be before we care /// about alignment. This is somewhat arbitrary. It just doesn't make sense /// to waste bytes for alignment when the data chunk is very small. /// /// TODO Rename and use this also for Subblock Data? #define RLE_MIN_SIZE_FOR_ALIGN 3 #define write_byte(b) \ do { \ out[*out_pos] = b; \ ++*out_pos; \ ++coder->alignment.out_pos; \ } while (0) struct lzma_coder_s { lzma_next_coder next; bool next_finished; enum { SEQ_FILL, SEQ_FLUSH, SEQ_RLE_COUNT_0, SEQ_RLE_COUNT_1, SEQ_RLE_COUNT_2, SEQ_RLE_COUNT_3, SEQ_RLE_SIZE, SEQ_RLE_DATA, SEQ_DATA_SIZE_0, SEQ_DATA_SIZE_1, SEQ_DATA_SIZE_2, SEQ_DATA_SIZE_3, SEQ_DATA, SEQ_SUBFILTER_INIT, SEQ_SUBFILTER_FLAGS, } sequence; lzma_options_subblock *options; lzma_vli uncompressed_size; size_t pos; uint32_t tmp; struct { uint32_t multiple; uint32_t in_pending; uint32_t in_pos; uint32_t out_pos; } alignment; struct { uint8_t *data; size_t size; size_t limit; } subblock; struct { uint8_t buffer[LZMA_SUBBLOCK_RLE_MAX]; size_t size; lzma_vli count; } rle; struct { enum { SUB_NONE, SUB_SET, SUB_RUN, SUB_FINISH, SUB_END_MARKER, } mode; bool got_input; uint8_t *flags; size_t flags_size; lzma_next_coder subcoder; } subfilter; struct { size_t pos; size_t size; uint8_t buffer[LZMA_BUFFER_SIZE]; } temp; }; /// \brief Aligns the output buffer /// /// Aligns the output buffer so that after skew bytes the output position is /// a multiple of coder->alignment.multiple. static bool subblock_align(lzma_coder *coder, uint8_t *restrict out, size_t *restrict out_pos, size_t out_size, uint32_t skew) { assert(*out_pos < out_size); const uint32_t target = coder->alignment.in_pos % coder->alignment.multiple; while ((coder->alignment.out_pos + skew) % coder->alignment.multiple != target) { // Zero indicates padding. write_byte(0x00); // Check if output buffer got full and indicate it to // the caller. if (*out_pos == out_size) return true; } coder->alignment.in_pos += coder->alignment.in_pending; coder->alignment.in_pending = 0; // Output buffer is not full. return false; } /// \brief Checks if buffer contains repeated data /// /// \param needle Buffer containing a single repeat chunk /// \param needle_size Size of needle in bytes /// \param buf Buffer to search for repeated needles /// \param buf_chunks Buffer size is buf_chunks * needle_size. /// /// \return True if the whole buf is filled with repeated needles. /// static bool is_repeating(const uint8_t *restrict needle, size_t needle_size, const uint8_t *restrict buf, size_t buf_chunks) { while (buf_chunks-- != 0) { if (memcmp(buf, needle, needle_size) != 0) return false; buf += needle_size; } return true; } /// \brief Optimizes the repeating style and updates coder->sequence static void subblock_rle_flush(lzma_coder *coder) { // The Subblock decoder can use memset() when the size of the data // being repeated is one byte, so we check if the RLE buffer is // filled with a single repeating byte. if (coder->rle.size > 1) { const uint8_t b = coder->rle.buffer[0]; size_t i = 0; while (true) { if (coder->rle.buffer[i] != b) break; if (++i == coder->rle.size) { // TODO Integer overflow check maybe, // although this needs at least 2**63 bytes // of input until it gets triggered... coder->rle.count *= coder->rle.size; coder->rle.size = 1; break; } } } if (coder->rle.count > REPEAT_COUNT_MAX) coder->tmp = REPEAT_COUNT_MAX - 1; else coder->tmp = coder->rle.count - 1; coder->sequence = SEQ_RLE_COUNT_0; return; } /// \brief Resizes coder->subblock.data for a new size limit static lzma_ret subblock_data_size(lzma_coder *coder, lzma_allocator *allocator, size_t new_limit) { // Verify that the new limit is valid. if (new_limit < LZMA_SUBBLOCK_DATA_SIZE_MIN || new_limit > LZMA_SUBBLOCK_DATA_SIZE_MAX) return LZMA_HEADER_ERROR; // Ff the new limit is different than the previous one, we need // to reallocate the data buffer. if (new_limit != coder->subblock.limit) { lzma_free(coder->subblock.data, allocator); coder->subblock.data = lzma_alloc(new_limit, allocator); if (coder->subblock.data == NULL) return LZMA_MEM_ERROR; } coder->subblock.limit = new_limit; return LZMA_OK; } static lzma_ret subblock_buffer(lzma_coder *coder, lzma_allocator *allocator, const uint8_t *restrict in, size_t *restrict in_pos, size_t in_size, uint8_t *restrict out, size_t *restrict out_pos, size_t out_size, lzma_action action) { // Verify that there is a sane amount of input. if (coder->uncompressed_size != LZMA_VLI_VALUE_UNKNOWN) { const lzma_vli in_avail = in_size - *in_pos; if (action == LZMA_FINISH) { if (in_avail != coder->uncompressed_size) return LZMA_DATA_ERROR; } else { if (in_avail > coder->uncompressed_size) return LZMA_DATA_ERROR; } } // Check if we need to do something special with the Subfilter. if (coder->options != NULL && coder->options->allow_subfilters) { switch (coder->options->subfilter_mode) { case LZMA_SUBFILTER_NONE: if (coder->subfilter.mode != SUB_NONE) return LZMA_PROG_ERROR; break; case LZMA_SUBFILTER_SET: if (coder->subfilter.mode != SUB_NONE) return LZMA_HEADER_ERROR; coder->subfilter.mode = SUB_SET; coder->subfilter.got_input = false; if (coder->sequence == SEQ_FILL) coder->sequence = SEQ_FLUSH; break; case LZMA_SUBFILTER_RUN: if (coder->subfilter.mode != SUB_RUN) return LZMA_PROG_ERROR; break; case LZMA_SUBFILTER_FINISH: if (coder->subfilter.mode == SUB_RUN) coder->subfilter.mode = SUB_FINISH; else if (coder->subfilter.mode != SUB_FINISH) return LZMA_PROG_ERROR; if (!coder->subfilter.got_input) return LZMA_PROG_ERROR; break; default: return LZMA_HEADER_ERROR; } } // Main loop while (*out_pos < out_size) switch (coder->sequence) { case SEQ_FILL: { // Grab the new Subblock Data Size and reallocate the buffer. if (coder->subblock.size == 0 && coder->options != NULL && coder->options->subblock_data_size != coder->subblock.limit) { const lzma_ret ret = subblock_data_size(coder, allocator, coder->options ->subblock_data_size); if (ret != LZMA_OK) return ret; } if (coder->subfilter.mode == SUB_NONE) { assert(coder->subfilter.subcoder.code == NULL); // No Subfilter is enabled, just copy the data as is. // NOTE: uncompressed_size cannot overflow because we // have checked/ it in the beginning of this function. const size_t in_used = bufcpy(in, in_pos, in_size, coder->subblock.data, &coder->subblock.size, coder->subblock.limit); if (coder->uncompressed_size != LZMA_VLI_VALUE_UNKNOWN) coder->uncompressed_size -= in_used; coder->alignment.in_pending += in_used; } else { const size_t in_start = *in_pos; lzma_ret ret; if (coder->subfilter.mode == SUB_FINISH) { // Let the Subfilter write out pending data, // but don't give it any new input anymore. size_t dummy = 0; ret = coder->subfilter.subcoder.code(coder ->subfilter.subcoder.coder, allocator, NULL, &dummy, 0, coder->subblock.data, &coder->subblock.size, coder->subblock.limit, LZMA_FINISH); } else { // Give our input data to the Subfilter. Note // that action can be LZMA_FINISH. In that // case, we filter everything until the end // of the input. The application isn't required // to separately set LZMA_SUBBLOCK_FINISH. ret = coder->subfilter.subcoder.code(coder ->subfilter.subcoder.coder, allocator, in, in_pos, in_size, coder->subblock.data, &coder->subblock.size, coder->subblock.limit, action); } const size_t in_used = *in_pos - in_start; if (in_used > 0) coder->subfilter.got_input = true; // NOTE: uncompressed_size cannot overflow because we // have checked it in the beginning of this function. if (coder->uncompressed_size != LZMA_VLI_VALUE_UNKNOWN) coder->uncompressed_size -= *in_pos - in_start; coder->alignment.in_pending += in_used; if (ret == LZMA_STREAM_END) { // We don't strictly need to do this, but // doing it sounds like a good idea, because // otherwise the Subfilter's memory could be // left allocated for long time, and would // just waste memory. lzma_next_coder_end(&coder->subfilter.subcoder, allocator); assert(coder->options != NULL); coder->options->subfilter_mode = LZMA_SUBFILTER_NONE; assert(coder->subfilter.mode == SUB_FINISH || action == LZMA_FINISH); coder->subfilter.mode = SUB_END_MARKER; // Flush now. Even if coder->subblock.size // happens to be zero, we still need to go // to SEQ_FLUSH to write the Subfilter Unset // indicator. coder->sequence = SEQ_FLUSH; break; } // Return if an error occurred. if (ret != LZMA_OK) return ret; } // If we ran out of input before the whole buffer // was filled, return to application. if (coder->subblock.size < coder->subblock.limit && action != LZMA_FINISH) return LZMA_OK; coder->sequence = SEQ_FLUSH; } // Fall through case SEQ_FLUSH: if (coder->options != NULL) { // Update the alignment variable. coder->alignment.multiple = coder->options->alignment; if (coder->alignment.multiple < LZMA_SUBBLOCK_ALIGNMENT_MIN || coder->alignment.multiple > LZMA_SUBBLOCK_ALIGNMENT_MAX) return LZMA_HEADER_ERROR; // Run-length encoder // // First check if there is some data pending and we // have an obvious need to flush it immediatelly. if (coder->rle.count > 0 && (coder->rle.size != coder->options->rle || coder->subblock.size % coder->rle.size)) { subblock_rle_flush(coder); break; } // Grab the (possibly new) RLE chunk size and // validate it. coder->rle.size = coder->options->rle; if (coder->rle.size > LZMA_SUBBLOCK_RLE_MAX) return LZMA_HEADER_ERROR; if (coder->subblock.size != 0 && coder->rle.size != LZMA_SUBBLOCK_RLE_OFF && coder->subblock.size % coder->rle.size == 0) { // Initialize coder->rle.buffer if we don't // have RLE already running. if (coder->rle.count == 0) memcpy(coder->rle.buffer, coder->subblock.data, coder->rle.size); // Test if coder->subblock.data is repeating. const size_t count = coder->subblock.size / coder->rle.size; if (is_repeating(coder->rle.buffer, coder->rle.size, coder->subblock.data, count)) { if (LZMA_VLI_VALUE_MAX - count < coder->rle.count) return LZMA_PROG_ERROR; coder->rle.count += count; coder->subblock.size = 0; } else if (coder->rle.count > 0) { // It's not repeating or at least not // with the same byte sequence as the // earlier Subblock Data buffers. We // have some data pending in the RLE // buffer already, so do a flush. // Once flushed, we will check again // if the Subblock Data happens to // contain a different repeating // sequence. subblock_rle_flush(coder); break; } } } // If we now have some data left in coder->subblock, the RLE // buffer is empty and we must write a regular Subblock Data. if (coder->subblock.size > 0) { assert(coder->rle.count == 0); coder->tmp = coder->subblock.size - 1; coder->sequence = SEQ_DATA_SIZE_0; break; } // Check if we should enable Subfilter. if (coder->subfilter.mode == SUB_SET) { if (coder->rle.count > 0) subblock_rle_flush(coder); else coder->sequence = SEQ_SUBFILTER_INIT; break; } // Check if we have just finished Subfiltering. if (coder->subfilter.mode == SUB_END_MARKER) { if (coder->rle.count > 0) { subblock_rle_flush(coder); break; } write_byte(0x50); coder->subfilter.mode = SUB_NONE; if (*out_pos == out_size) return LZMA_OK; } // Check if we have already written everything. if (action == LZMA_FINISH && *in_pos == in_size && coder->subfilter.mode == SUB_NONE) { if (coder->rle.count > 0) { subblock_rle_flush(coder); break; } if (coder->uncompressed_size == LZMA_VLI_VALUE_UNKNOWN) { // NOTE: No need to use write_byte() here // since we are finishing. out[*out_pos] = 0x10; ++*out_pos; } else if (coder->uncompressed_size != 0) { return LZMA_DATA_ERROR; } return LZMA_STREAM_END; } // Otherwise we have more work to do. coder->sequence = SEQ_FILL; break; case SEQ_RLE_COUNT_0: // Make the Data field properly aligned, but only if the data // chunk to be repeated isn't extremely small. We have four // bytes for Count and one byte for Size, thus the number five. if (coder->rle.size >= RLE_MIN_SIZE_FOR_ALIGN && subblock_align( coder, out, out_pos, out_size, 5)) return LZMA_OK; assert(coder->rle.count > 0); write_byte(0x30 | (coder->tmp & 0x0F)); coder->sequence = SEQ_RLE_COUNT_1; break; case SEQ_RLE_COUNT_1: write_byte(coder->tmp >> 4); coder->sequence = SEQ_RLE_COUNT_2; break; case SEQ_RLE_COUNT_2: write_byte(coder->tmp >> 12); coder->sequence = SEQ_RLE_COUNT_3; break; case SEQ_RLE_COUNT_3: write_byte(coder->tmp >> 20); if (coder->rle.count > REPEAT_COUNT_MAX) coder->rle.count -= REPEAT_COUNT_MAX; else coder->rle.count = 0; coder->sequence = SEQ_RLE_SIZE; break; case SEQ_RLE_SIZE: assert(coder->rle.size >= LZMA_SUBBLOCK_RLE_MIN); assert(coder->rle.size <= LZMA_SUBBLOCK_RLE_MAX); write_byte(coder->rle.size - 1); coder->sequence = SEQ_RLE_DATA; break; case SEQ_RLE_DATA: bufcpy(coder->rle.buffer, &coder->pos, coder->rle.size, out, out_pos, out_size); if (coder->pos < coder->rle.size) return LZMA_OK; coder->alignment.out_pos += coder->rle.size; coder->pos = 0; coder->sequence = SEQ_FLUSH; break; case SEQ_DATA_SIZE_0: // We need four bytes for the Size field. if (subblock_align(coder, out, out_pos, out_size, 4)) return LZMA_OK; write_byte(0x20 | (coder->tmp & 0x0F)); coder->sequence = SEQ_DATA_SIZE_1; break; case SEQ_DATA_SIZE_1: write_byte(coder->tmp >> 4); coder->sequence = SEQ_DATA_SIZE_2; break; case SEQ_DATA_SIZE_2: write_byte(coder->tmp >> 12); coder->sequence = SEQ_DATA_SIZE_3; break; case SEQ_DATA_SIZE_3: write_byte(coder->tmp >> 20); coder->sequence = SEQ_DATA; break; case SEQ_DATA: bufcpy(coder->subblock.data, &coder->pos, coder->subblock.size, out, out_pos, out_size); if (coder->pos < coder->subblock.size) return LZMA_OK; coder->alignment.out_pos += coder->subblock.size; coder->subblock.size = 0; coder->pos = 0; coder->sequence = SEQ_FLUSH; break; case SEQ_SUBFILTER_INIT: { assert(coder->subblock.size == 0); assert(coder->rle.count == 0); assert(coder->subfilter.mode == SUB_SET); assert(coder->options != NULL); // There must be a filter specified. if (coder->options->subfilter_options.id == LZMA_VLI_VALUE_UNKNOWN) return LZMA_HEADER_ERROR; // Initialize a raw encoder to work as a Subfilter. lzma_options_filter options[2]; options[0] = coder->options->subfilter_options; options[1].id = LZMA_VLI_VALUE_UNKNOWN; lzma_ret ret = lzma_raw_encoder_init( &coder->subfilter.subcoder, allocator, options, LZMA_VLI_VALUE_UNKNOWN, false); if (ret != LZMA_OK) return ret; // Encode the Filter Flags field into a buffer. This should // never fail since we have already successfully initialized // the Subfilter itself. Check it still, and return // LZMA_PROG_ERROR instead of whatever the ret would say. ret = lzma_filter_flags_size( &coder->subfilter.flags_size, options); assert(ret == LZMA_OK); if (ret != LZMA_OK) return LZMA_PROG_ERROR; coder->subfilter.flags = lzma_alloc( coder->subfilter.flags_size, allocator); if (coder->subfilter.flags == NULL) return LZMA_MEM_ERROR; // Now we have a big-enough buffer. Encode the Filter Flags. // Like above, this should never fail. size_t dummy = 0; ret = lzma_filter_flags_encode(coder->subfilter.flags, &dummy, coder->subfilter.flags_size, options); assert(ret == LZMA_OK); assert(dummy == coder->subfilter.flags_size); if (ret != LZMA_OK || dummy != coder->subfilter.flags_size) return LZMA_PROG_ERROR; // Write a Subblock indicating a new Subfilter. write_byte(0x40); coder->options->subfilter_mode = LZMA_SUBFILTER_RUN; coder->subfilter.mode = SUB_RUN; coder->sequence = SEQ_SUBFILTER_FLAGS; } // Fall through case SEQ_SUBFILTER_FLAGS: // Copy the Filter Flags to the output stream. bufcpy(coder->subfilter.flags, &coder->pos, coder->subfilter.flags_size, out, out_pos, out_size); if (coder->pos < coder->subfilter.flags_size) return LZMA_OK; lzma_free(coder->subfilter.flags, allocator); coder->subfilter.flags = NULL; coder->pos = 0; coder->sequence = SEQ_FILL; break; default: return LZMA_PROG_ERROR; } return LZMA_OK; } static lzma_ret subblock_encode(lzma_coder *coder, lzma_allocator *allocator, const uint8_t *restrict in, size_t *restrict in_pos, size_t in_size, uint8_t *restrict out, size_t *restrict out_pos, size_t out_size, lzma_action action) { if (coder->next.code == NULL) return subblock_buffer(coder, allocator, in, in_pos, in_size, out, out_pos, out_size, action); while (*out_pos < out_size && (*in_pos < in_size || action == LZMA_FINISH)) { if (!coder->next_finished && coder->temp.pos == coder->temp.size) { coder->temp.pos = 0; coder->temp.size = 0; const lzma_ret ret = coder->next.code(coder->next.coder, allocator, in, in_pos, in_size, coder->temp.buffer, &coder->temp.size, LZMA_BUFFER_SIZE, action); if (ret == LZMA_STREAM_END) { assert(action == LZMA_FINISH); coder->next_finished = true; } else if (coder->temp.size == 0 || ret != LZMA_OK) { return ret; } } const lzma_ret ret = subblock_buffer(coder, allocator, coder->temp.buffer, &coder->temp.pos, coder->temp.size, out, out_pos, out_size, coder->next_finished ? LZMA_FINISH : LZMA_RUN); if (ret == LZMA_STREAM_END) { assert(action == LZMA_FINISH); assert(coder->next_finished); return LZMA_STREAM_END; } if (ret != LZMA_OK) return ret; } return LZMA_OK; } static void subblock_encoder_end(lzma_coder *coder, lzma_allocator *allocator) { lzma_next_coder_end(&coder->next, allocator); lzma_next_coder_end(&coder->subfilter.subcoder, allocator); lzma_free(coder->subblock.data, allocator); lzma_free(coder->subfilter.flags, allocator); return; } extern lzma_ret lzma_subblock_encoder_init(lzma_next_coder *next, lzma_allocator *allocator, const lzma_filter_info *filters) { if (next->coder == NULL) { next->coder = lzma_alloc(sizeof(lzma_coder), allocator); if (next->coder == NULL) return LZMA_MEM_ERROR; next->coder->next = LZMA_NEXT_CODER_INIT; next->coder->subblock.data = NULL; next->coder->subblock.limit = 0; next->coder->subfilter.subcoder = LZMA_NEXT_CODER_INIT; } else { lzma_next_coder_end(&next->coder->subfilter.subcoder, allocator); lzma_free(next->coder->subfilter.flags, allocator); } next->coder->subfilter.flags = NULL; next->coder->next_finished = false; next->coder->sequence = SEQ_FILL; next->coder->options = filters[0].options; next->coder->uncompressed_size = filters[0].uncompressed_size; next->coder->pos = 0; next->coder->alignment.in_pending = 0; next->coder->alignment.in_pos = 0; next->coder->alignment.out_pos = 0; next->coder->subblock.size = 0; next->coder->rle.count = 0; next->coder->subfilter.mode = SUB_NONE; next->coder->temp.pos = 0; next->coder->temp.size = 0; // Grab some values from the options structure if it is available. size_t subblock_size_limit; if (next->coder->options != NULL) { if (next->coder->options->alignment < LZMA_SUBBLOCK_ALIGNMENT_MIN || next->coder->options->alignment > LZMA_SUBBLOCK_ALIGNMENT_MAX) { subblock_encoder_end(next->coder, allocator); return LZMA_HEADER_ERROR; } next->coder->alignment.multiple = next->coder->options->alignment; subblock_size_limit = next->coder->options->subblock_data_size; } else { next->coder->alignment.multiple = LZMA_SUBBLOCK_ALIGNMENT_DEFAULT; subblock_size_limit = LZMA_SUBBLOCK_DATA_SIZE_DEFAULT; } { const lzma_ret ret = subblock_data_size(next->coder, allocator, subblock_size_limit); if (ret != LZMA_OK) { subblock_encoder_end(next->coder, allocator); return ret; } } { const lzma_ret ret = lzma_next_filter_init(&next->coder->next, allocator, filters + 1); if (ret != LZMA_OK) { subblock_encoder_end(next->coder, allocator); return ret; } } next->code = &subblock_encode; next->end = &subblock_encoder_end; return LZMA_OK; }