/////////////////////////////////////////////////////////////////////////////// // /// \file subblock_encoder.c /// \brief Encoder of the Subblock filter // // Author: Lasse Collin // // This file has been put into the public domain. // You can do whatever you want with this file. // /////////////////////////////////////////////////////////////////////////////// #include "subblock_encoder.h" #include "filter_encoder.h" /// Maximum number of repeats that a single Repeating Data can indicate. /// This is directly from the file format specification. #define REPEAT_COUNT_MAX (1U << 28) /// Number of bytes the data chunk (not including the header part) must be /// before we care about alignment. This is somewhat arbitrary. It just /// doesn't make sense to waste bytes for alignment when the data chunk /// is very small. #define MIN_CHUNK_SIZE_FOR_ALIGN 4 /// Number of bytes of the header part of Subblock Type `Data'. This is /// used as the `skew' argument for subblock_align(). #define ALIGN_SKEW_DATA 4 /// Like above but for Repeating Data. #define ALIGN_SKEW_REPEATING_DATA 5 /// Writes one byte to output buffer and updates the alignment counter. #define write_byte(b) \ do { \ assert(*out_pos < out_size); \ out[*out_pos] = b; \ ++*out_pos; \ ++coder->alignment.out_pos; \ } while (0) struct lzma_coder_s { lzma_next_coder next; bool next_finished; enum { SEQ_FILL, SEQ_FLUSH, SEQ_RLE_COUNT_0, SEQ_RLE_COUNT_1, SEQ_RLE_COUNT_2, SEQ_RLE_COUNT_3, SEQ_RLE_SIZE, SEQ_RLE_DATA, SEQ_DATA_SIZE_0, SEQ_DATA_SIZE_1, SEQ_DATA_SIZE_2, SEQ_DATA_SIZE_3, SEQ_DATA, SEQ_SUBFILTER_INIT, SEQ_SUBFILTER_FLAGS, } sequence; /// Pointer to the options given by the application. This is used /// for two-way communication with the application. lzma_options_subblock *options; /// Position in various arrays. size_t pos; /// Holds subblock.size - 1 or rle.size - 1 when encoding size /// of Data or Repeat Count. uint32_t tmp; struct { /// This is a copy of options->alignment, or /// LZMA_SUBBLOCK_ALIGNMENT_DEFAULT if options is NULL. uint32_t multiple; /// Number of input bytes which we have processed and started /// writing out. 32-bit integer is enough since we care only /// about the lowest bits when fixing alignment. uint32_t in_pos; /// Number of bytes written out. uint32_t out_pos; } alignment; struct { /// Pointer to allocated buffer holding the Data field /// of Subblock Type "Data". uint8_t *data; /// Number of bytes in the buffer. size_t size; /// Allocated size of the buffer. size_t limit; /// Number of input bytes that we have already read but /// not yet started writing out. This can be different /// to `size' when using Subfilter. That's why we track /// in_pending separately for RLE (see below). uint32_t in_pending; } subblock; struct { /// Buffer to hold the data that may be coded with /// Subblock Type `Repeating Data'. uint8_t buffer[LZMA_SUBBLOCK_RLE_MAX]; /// Number of bytes in buffer[]. size_t size; /// Number of times the first `size' bytes of buffer[] /// will be repeated. uint64_t count; /// Like subblock.in_pending above, but for RLE. uint32_t in_pending; } rle; struct { enum { SUB_NONE, SUB_SET, SUB_RUN, SUB_FLUSH, SUB_FINISH, SUB_END_MARKER, } mode; /// This is a copy of options->allow_subfilters. We use /// this to verify that the application doesn't change /// the value of allow_subfilters. bool allow; /// When this is true, application is not allowed to modify /// options->subblock_mode. We may still modify it here. bool mode_locked; /// True if we have encoded at least one byte of data with /// the Subfilter. bool got_input; /// Track the amount of input available once /// LZMA_SUBFILTER_FINISH has been enabled. /// This is needed for sanity checking (kind /// of duplicating what common/code.c does). size_t in_avail; /// Buffer for the Filter Flags field written after /// the `Set Subfilter' indicator. uint8_t *flags; /// Size of Filter Flags field. uint32_t flags_size; /// Pointers to Subfilter. lzma_next_coder subcoder; } subfilter; /// Temporary buffer used when we are not the last filter in the chain. struct { size_t pos; size_t size; uint8_t buffer[LZMA_BUFFER_SIZE]; } temp; }; /// \brief Aligns the output buffer /// /// Aligns the output buffer so that after skew bytes the output position is /// a multiple of coder->alignment.multiple. static bool subblock_align(lzma_coder *coder, uint8_t *restrict out, size_t *restrict out_pos, size_t out_size, size_t chunk_size, uint32_t skew) { assert(*out_pos < out_size); // Fix the alignment only if it makes sense at least a little. if (chunk_size >= MIN_CHUNK_SIZE_FOR_ALIGN) { const uint32_t target = coder->alignment.in_pos % coder->alignment.multiple; while ((coder->alignment.out_pos + skew) % coder->alignment.multiple != target) { // Zero indicates padding. write_byte(0x00); // Check if output buffer got full and indicate it to // the caller. if (*out_pos == out_size) return true; } } // Output buffer is not full. return false; } /// \brief Checks if buffer contains repeated data /// /// \param needle Buffer containing a single repeat chunk /// \param needle_size Size of needle in bytes /// \param buf Buffer to search for repeated needles /// \param buf_chunks Buffer size is buf_chunks * needle_size. /// /// \return True if the whole buf is filled with repeated needles. /// static bool is_repeating(const uint8_t *restrict needle, size_t needle_size, const uint8_t *restrict buf, size_t buf_chunks) { while (buf_chunks-- != 0) { if (memcmp(buf, needle, needle_size) != 0) return false; buf += needle_size; } return true; } /// \brief Optimizes the repeating style and updates coder->sequence static void subblock_rle_flush(lzma_coder *coder) { // The Subblock decoder can use memset() when the size of the data // being repeated is one byte, so we check if the RLE buffer is // filled with a single repeating byte. if (coder->rle.size > 1) { const uint8_t b = coder->rle.buffer[0]; size_t i = 0; while (true) { if (coder->rle.buffer[i] != b) break; if (++i == coder->rle.size) { // TODO Integer overflow check maybe, // although this needs at least 2**63 bytes // of input until it gets triggered... coder->rle.count *= coder->rle.size; coder->rle.size = 1; break; } } } if (coder->rle.count == 1) { // The buffer should be repeated only once. It is // waste of space to use Repeating Data. Instead, // write a regular Data Subblock. See SEQ_RLE_COUNT_0 // in subblock_buffer() for more info. coder->tmp = coder->rle.size - 1; } else if (coder->rle.count > REPEAT_COUNT_MAX) { // There's so much to repeat that it doesn't fit into // 28-bit integer. We will write two or more Subblocks // of type Repeating Data. coder->tmp = REPEAT_COUNT_MAX - 1; } else { coder->tmp = coder->rle.count - 1; } coder->sequence = SEQ_RLE_COUNT_0; return; } /// \brief Resizes coder->subblock.data for a new size limit static lzma_ret subblock_data_size(lzma_coder *coder, lzma_allocator *allocator, size_t new_limit) { // Verify that the new limit is valid. if (new_limit < LZMA_SUBBLOCK_DATA_SIZE_MIN || new_limit > LZMA_SUBBLOCK_DATA_SIZE_MAX) return LZMA_OPTIONS_ERROR; // Ff the new limit is different than the previous one, we need // to reallocate the data buffer. if (new_limit != coder->subblock.limit) { lzma_free(coder->subblock.data, allocator); coder->subblock.data = lzma_alloc(new_limit, allocator); if (coder->subblock.data == NULL) return LZMA_MEM_ERROR; } coder->subblock.limit = new_limit; return LZMA_OK; } static lzma_ret subblock_buffer(lzma_coder *coder, lzma_allocator *allocator, const uint8_t *restrict in, size_t *restrict in_pos, size_t in_size, uint8_t *restrict out, size_t *restrict out_pos, size_t out_size, lzma_action action) { // Changing allow_subfilter is not allowed. if (coder->options != NULL && coder->subfilter.allow != coder->options->allow_subfilters) return LZMA_PROG_ERROR; // Check if we need to do something special with the Subfilter. if (coder->subfilter.allow) { assert(coder->options != NULL); // See if subfilter_mode has been changed. switch (coder->options->subfilter_mode) { case LZMA_SUBFILTER_NONE: if (coder->subfilter.mode != SUB_NONE) return LZMA_PROG_ERROR; break; case LZMA_SUBFILTER_SET: if (coder->subfilter.mode_locked || coder->subfilter.mode != SUB_NONE) return LZMA_PROG_ERROR; coder->subfilter.mode = SUB_SET; coder->subfilter.got_input = false; if (coder->sequence == SEQ_FILL) coder->sequence = SEQ_FLUSH; break; case LZMA_SUBFILTER_RUN: if (coder->subfilter.mode != SUB_RUN) return LZMA_PROG_ERROR; break; case LZMA_SUBFILTER_FINISH: { const size_t in_avail = in_size - *in_pos; if (coder->subfilter.mode == SUB_RUN) { if (coder->subfilter.mode_locked) return LZMA_PROG_ERROR; coder->subfilter.mode = SUB_FINISH; coder->subfilter.in_avail = in_avail; } else if (coder->subfilter.mode != SUB_FINISH || coder->subfilter.in_avail != in_avail) { return LZMA_PROG_ERROR; } break; } default: return LZMA_OPTIONS_ERROR; } // If we are sync-flushing or finishing, the application may // no longer change subfilter_mode. Note that this check is // done after checking the new subfilter_mode above; this // way the application may e.g. set LZMA_SUBFILTER_SET and // LZMA_SYNC_FLUSH at the same time, but it cannot modify // subfilter_mode on the later lzma_code() calls before // we have returned LZMA_STREAM_END. if (action != LZMA_RUN) coder->subfilter.mode_locked = true; } // Main loop while (*out_pos < out_size) switch (coder->sequence) { case SEQ_FILL: // Grab the new Subblock Data Size and reallocate the buffer. if (coder->subblock.size == 0 && coder->options != NULL && coder->options->subblock_data_size != coder->subblock.limit) return_if_error(subblock_data_size(coder, allocator, coder->options ->subblock_data_size)); if (coder->subfilter.mode == SUB_NONE) { assert(coder->subfilter.subcoder.code == NULL); // No Subfilter is enabled, just copy the data as is. coder->subblock.in_pending += lzma_bufcpy( in, in_pos, in_size, coder->subblock.data, &coder->subblock.size, coder->subblock.limit); // If we ran out of input before the whole buffer // was filled, return to application. if (coder->subblock.size < coder->subblock.limit && action == LZMA_RUN) return LZMA_OK; } else { assert(coder->options->subfilter_mode != LZMA_SUBFILTER_SET); // Using LZMA_FINISH automatically toggles // LZMA_SUBFILTER_FINISH. // // NOTE: It is possible that application had set // LZMA_SUBFILTER_SET and LZMA_FINISH at the same // time. In that case it is possible that we will // cycle to LZMA_SUBFILTER_RUN, LZMA_SUBFILTER_FINISH, // and back to LZMA_SUBFILTER_NONE in a single // Subblock encoder function call. if (action == LZMA_FINISH) { coder->options->subfilter_mode = LZMA_SUBFILTER_FINISH; coder->subfilter.mode = SUB_FINISH; } const size_t in_start = *in_pos; const lzma_ret ret = coder->subfilter.subcoder.code( coder->subfilter.subcoder.coder, allocator, in, in_pos, in_size, coder->subblock.data, &coder->subblock.size, coder->subblock.limit, coder->subfilter.mode == SUB_FINISH ? LZMA_FINISH : action); const size_t in_used = *in_pos - in_start; coder->subblock.in_pending += in_used; if (in_used > 0) coder->subfilter.got_input = true; coder->subfilter.in_avail = in_size - *in_pos; if (ret == LZMA_STREAM_END) { // All currently available input must have // been processed. assert(*in_pos == in_size); // Flush now. Even if coder->subblock.size // happened to be zero, we still need to go // to SEQ_FLUSH to possibly finish RLE or // write the Subfilter Unset indicator. coder->sequence = SEQ_FLUSH; if (coder->subfilter.mode == SUB_RUN) { // Flushing with Subfilter enabled. assert(action == LZMA_SYNC_FLUSH); coder->subfilter.mode = SUB_FLUSH; break; } // Subfilter finished its job. assert(coder->subfilter.mode == SUB_FINISH || action == LZMA_FINISH); // At least one byte of input must have been // encoded with the Subfilter. This is // required by the file format specification. if (!coder->subfilter.got_input) return LZMA_PROG_ERROR; // We don't strictly need to do this, but // doing it sounds like a good idea, because // otherwise the Subfilter's memory could be // left allocated for long time, and would // just waste memory. lzma_next_end(&coder->subfilter.subcoder, allocator); // We need to flush the currently buffered // data and write Unset Subfilter marker. // Note that we cannot set // coder->options->subfilter_mode to // LZMA_SUBFILTER_NONE yet, because we // haven't written the Unset Subfilter // marker yet. coder->subfilter.mode = SUB_END_MARKER; coder->sequence = SEQ_FLUSH; break; } // Return if we couldn't fill the buffer or // if an error occurred. if (coder->subblock.size < coder->subblock.limit || ret != LZMA_OK) return ret; } coder->sequence = SEQ_FLUSH; // SEQ_FILL doesn't produce any output so falling through // to SEQ_FLUSH is safe. assert(*out_pos < out_size); // Fall through case SEQ_FLUSH: if (coder->options != NULL) { // Update the alignment variable. coder->alignment.multiple = coder->options->alignment; if (coder->alignment.multiple < LZMA_SUBBLOCK_ALIGNMENT_MIN || coder->alignment.multiple > LZMA_SUBBLOCK_ALIGNMENT_MAX) return LZMA_OPTIONS_ERROR; // Run-length encoder // // First check if there is some data pending and we // have an obvious need to flush it immediatelly. if (coder->rle.count > 0 && (coder->rle.size != coder->options->rle || coder->subblock.size % coder->rle.size)) { subblock_rle_flush(coder); break; } // Grab the (possibly new) RLE chunk size and // validate it. coder->rle.size = coder->options->rle; if (coder->rle.size > LZMA_SUBBLOCK_RLE_MAX) return LZMA_OPTIONS_ERROR; if (coder->subblock.size != 0 && coder->rle.size != LZMA_SUBBLOCK_RLE_OFF && coder->subblock.size % coder->rle.size == 0) { // Initialize coder->rle.buffer if we don't // have RLE already running. if (coder->rle.count == 0) memcpy(coder->rle.buffer, coder->subblock.data, coder->rle.size); // Test if coder->subblock.data is repeating. // If coder->rle.count would overflow, we // force flushing. Forced flushing shouldn't // really happen in real-world situations. const size_t count = coder->subblock.size / coder->rle.size; if (UINT64_MAX - count > coder->rle.count && is_repeating( coder->rle.buffer, coder->rle.size, coder->subblock.data, count)) { coder->rle.count += count; coder->rle.in_pending += coder ->subblock.in_pending; coder->subblock.in_pending = 0; coder->subblock.size = 0; } else if (coder->rle.count > 0) { // It's not repeating or at least not // with the same byte sequence as the // earlier Subblock Data buffers. We // have some data pending in the RLE // buffer already, so do a flush. // Once flushed, we will check again // if the Subblock Data happens to // contain a different repeating // sequence. subblock_rle_flush(coder); break; } } } // If we now have some data left in coder->subblock, the RLE // buffer is empty and we must write a regular Subblock Data. if (coder->subblock.size > 0) { assert(coder->rle.count == 0); coder->tmp = coder->subblock.size - 1; coder->sequence = SEQ_DATA_SIZE_0; break; } // Check if we should enable Subfilter. if (coder->subfilter.mode == SUB_SET) { if (coder->rle.count > 0) subblock_rle_flush(coder); else coder->sequence = SEQ_SUBFILTER_INIT; break; } // Check if we have just finished Subfiltering. if (coder->subfilter.mode == SUB_END_MARKER) { if (coder->rle.count > 0) { subblock_rle_flush(coder); break; } coder->options->subfilter_mode = LZMA_SUBFILTER_NONE; coder->subfilter.mode = SUB_NONE; write_byte(0x50); if (*out_pos == out_size) return LZMA_OK; } // Check if we have already written everything. if (action != LZMA_RUN && *in_pos == in_size && (coder->subfilter.mode == SUB_NONE || coder->subfilter.mode == SUB_FLUSH)) { if (coder->rle.count > 0) { subblock_rle_flush(coder); break; } if (action == LZMA_SYNC_FLUSH) { if (coder->subfilter.mode == SUB_FLUSH) coder->subfilter.mode = SUB_RUN; coder->subfilter.mode_locked = false; coder->sequence = SEQ_FILL; } else { assert(action == LZMA_FINISH); // Write EOPM. // NOTE: No need to use write_byte() here // since we are finishing. out[*out_pos] = 0x10; ++*out_pos; } return LZMA_STREAM_END; } // Otherwise we have more work to do. coder->sequence = SEQ_FILL; break; case SEQ_RLE_COUNT_0: assert(coder->rle.count > 0); if (coder->rle.count == 1) { // The buffer should be repeated only once. Fix // the alignment and write the first byte of // Subblock Type `Data'. if (subblock_align(coder, out, out_pos, out_size, coder->rle.size, ALIGN_SKEW_DATA)) return LZMA_OK; write_byte(0x20 | (coder->tmp & 0x0F)); } else { // We have something to actually repeat, which should // mean that it takes less space with run-length // encoding. if (subblock_align(coder, out, out_pos, out_size, coder->rle.size, ALIGN_SKEW_REPEATING_DATA)) return LZMA_OK; write_byte(0x30 | (coder->tmp & 0x0F)); } // NOTE: If we have to write more than one Repeating Data // due to rle.count > REPEAT_COUNT_MAX, the subsequent // Repeating Data Subblocks may get wrong alignment, because // we add rle.in_pending to alignment.in_pos at once instead // of adding only as much as this particular Repeating Data // consumed input data. Correct alignment is always restored // after all the required Repeating Data Subblocks have been // written. This problem occurs in such a weird cases that // it's not worth fixing. coder->alignment.out_pos += coder->rle.size; coder->alignment.in_pos += coder->rle.in_pending; coder->rle.in_pending = 0; coder->sequence = SEQ_RLE_COUNT_1; break; case SEQ_RLE_COUNT_1: write_byte(coder->tmp >> 4); coder->sequence = SEQ_RLE_COUNT_2; break; case SEQ_RLE_COUNT_2: write_byte(coder->tmp >> 12); coder->sequence = SEQ_RLE_COUNT_3; break; case SEQ_RLE_COUNT_3: write_byte(coder->tmp >> 20); // Again, see if we are writing regular Data or Repeating Data. // In the former case, we skip SEQ_RLE_SIZE. if (coder->rle.count == 1) coder->sequence = SEQ_RLE_DATA; else coder->sequence = SEQ_RLE_SIZE; if (coder->rle.count > REPEAT_COUNT_MAX) coder->rle.count -= REPEAT_COUNT_MAX; else coder->rle.count = 0; break; case SEQ_RLE_SIZE: assert(coder->rle.size >= LZMA_SUBBLOCK_RLE_MIN); assert(coder->rle.size <= LZMA_SUBBLOCK_RLE_MAX); write_byte(coder->rle.size - 1); coder->sequence = SEQ_RLE_DATA; break; case SEQ_RLE_DATA: lzma_bufcpy(coder->rle.buffer, &coder->pos, coder->rle.size, out, out_pos, out_size); if (coder->pos < coder->rle.size) return LZMA_OK; coder->pos = 0; coder->sequence = SEQ_FLUSH; break; case SEQ_DATA_SIZE_0: // We need four bytes for the Size field. if (subblock_align(coder, out, out_pos, out_size, coder->subblock.size, ALIGN_SKEW_DATA)) return LZMA_OK; coder->alignment.out_pos += coder->subblock.size; coder->alignment.in_pos += coder->subblock.in_pending; coder->subblock.in_pending = 0; write_byte(0x20 | (coder->tmp & 0x0F)); coder->sequence = SEQ_DATA_SIZE_1; break; case SEQ_DATA_SIZE_1: write_byte(coder->tmp >> 4); coder->sequence = SEQ_DATA_SIZE_2; break; case SEQ_DATA_SIZE_2: write_byte(coder->tmp >> 12); coder->sequence = SEQ_DATA_SIZE_3; break; case SEQ_DATA_SIZE_3: write_byte(coder->tmp >> 20); coder->sequence = SEQ_DATA; break; case SEQ_DATA: lzma_bufcpy(coder->subblock.data, &coder->pos, coder->subblock.size, out, out_pos, out_size); if (coder->pos < coder->subblock.size) return LZMA_OK; coder->subblock.size = 0; coder->pos = 0; coder->sequence = SEQ_FLUSH; break; case SEQ_SUBFILTER_INIT: { assert(coder->subblock.size == 0); assert(coder->subblock.in_pending == 0); assert(coder->rle.count == 0); assert(coder->rle.in_pending == 0); assert(coder->subfilter.mode == SUB_SET); assert(coder->options != NULL); // There must be a filter specified. if (coder->options->subfilter_options.id == LZMA_VLI_UNKNOWN) return LZMA_OPTIONS_ERROR; // Initialize a raw encoder to work as a Subfilter. lzma_filter options[2]; options[0] = coder->options->subfilter_options; options[1].id = LZMA_VLI_UNKNOWN; return_if_error(lzma_raw_encoder_init( &coder->subfilter.subcoder, allocator, options)); // Encode the Filter Flags field into a buffer. This should // never fail since we have already successfully initialized // the Subfilter itself. Check it still, and return // LZMA_PROG_ERROR instead of whatever the ret would say. lzma_ret ret = lzma_filter_flags_size( &coder->subfilter.flags_size, options); assert(ret == LZMA_OK); if (ret != LZMA_OK) return LZMA_PROG_ERROR; coder->subfilter.flags = lzma_alloc( coder->subfilter.flags_size, allocator); if (coder->subfilter.flags == NULL) return LZMA_MEM_ERROR; // Now we have a big-enough buffer. Encode the Filter Flags. // Like above, this should never fail. size_t dummy = 0; ret = lzma_filter_flags_encode(options, coder->subfilter.flags, &dummy, coder->subfilter.flags_size); assert(ret == LZMA_OK); assert(dummy == coder->subfilter.flags_size); if (ret != LZMA_OK || dummy != coder->subfilter.flags_size) return LZMA_PROG_ERROR; // Write a Subblock indicating a new Subfilter. write_byte(0x40); coder->options->subfilter_mode = LZMA_SUBFILTER_RUN; coder->subfilter.mode = SUB_RUN; coder->alignment.out_pos += coder->subfilter.flags_size; coder->sequence = SEQ_SUBFILTER_FLAGS; // It is safe to fall through because SEQ_SUBFILTER_FLAGS // uses lzma_bufcpy() which doesn't write unless there is // output space. } // Fall through case SEQ_SUBFILTER_FLAGS: // Copy the Filter Flags to the output stream. lzma_bufcpy(coder->subfilter.flags, &coder->pos, coder->subfilter.flags_size, out, out_pos, out_size); if (coder->pos < coder->subfilter.flags_size) return LZMA_OK; lzma_free(coder->subfilter.flags, allocator); coder->subfilter.flags = NULL; coder->pos = 0; coder->sequence = SEQ_FILL; break; default: return LZMA_PROG_ERROR; } return LZMA_OK; } static lzma_ret subblock_encode(lzma_coder *coder, lzma_allocator *allocator, const uint8_t *restrict in, size_t *restrict in_pos, size_t in_size, uint8_t *restrict out, size_t *restrict out_pos, size_t out_size, lzma_action action) { if (coder->next.code == NULL) return subblock_buffer(coder, allocator, in, in_pos, in_size, out, out_pos, out_size, action); while (*out_pos < out_size && (*in_pos < in_size || action != LZMA_RUN)) { if (!coder->next_finished && coder->temp.pos == coder->temp.size) { coder->temp.pos = 0; coder->temp.size = 0; const lzma_ret ret = coder->next.code(coder->next.coder, allocator, in, in_pos, in_size, coder->temp.buffer, &coder->temp.size, LZMA_BUFFER_SIZE, action); if (ret == LZMA_STREAM_END) { assert(action != LZMA_RUN); coder->next_finished = true; } else if (coder->temp.size == 0 || ret != LZMA_OK) { return ret; } } const lzma_ret ret = subblock_buffer(coder, allocator, coder->temp.buffer, &coder->temp.pos, coder->temp.size, out, out_pos, out_size, coder->next_finished ? LZMA_FINISH : LZMA_RUN); if (ret == LZMA_STREAM_END) { assert(action != LZMA_RUN); assert(coder->next_finished); return LZMA_STREAM_END; } if (ret != LZMA_OK) return ret; } return LZMA_OK; } static void subblock_encoder_end(lzma_coder *coder, lzma_allocator *allocator) { lzma_next_end(&coder->next, allocator); lzma_next_end(&coder->subfilter.subcoder, allocator); lzma_free(coder->subblock.data, allocator); lzma_free(coder->subfilter.flags, allocator); lzma_free(coder, allocator); return; } extern lzma_ret lzma_subblock_encoder_init(lzma_next_coder *next, lzma_allocator *allocator, const lzma_filter_info *filters) { if (next->coder == NULL) { next->coder = lzma_alloc(sizeof(lzma_coder), allocator); if (next->coder == NULL) return LZMA_MEM_ERROR; next->code = &subblock_encode; next->end = &subblock_encoder_end; next->coder->next = LZMA_NEXT_CODER_INIT; next->coder->subblock.data = NULL; next->coder->subblock.limit = 0; next->coder->subfilter.subcoder = LZMA_NEXT_CODER_INIT; } else { lzma_next_end(&next->coder->subfilter.subcoder, allocator); lzma_free(next->coder->subfilter.flags, allocator); } next->coder->subfilter.flags = NULL; next->coder->next_finished = false; next->coder->sequence = SEQ_FILL; next->coder->options = filters[0].options; next->coder->pos = 0; next->coder->alignment.in_pos = 0; next->coder->alignment.out_pos = 0; next->coder->subblock.size = 0; next->coder->subblock.in_pending = 0; next->coder->rle.count = 0; next->coder->rle.in_pending = 0; next->coder->subfilter.mode = SUB_NONE; next->coder->subfilter.mode_locked = false; next->coder->temp.pos = 0; next->coder->temp.size = 0; // Grab some values from the options structure if it is available. size_t subblock_size_limit; if (next->coder->options != NULL) { if (next->coder->options->alignment < LZMA_SUBBLOCK_ALIGNMENT_MIN || next->coder->options->alignment > LZMA_SUBBLOCK_ALIGNMENT_MAX) { subblock_encoder_end(next->coder, allocator); return LZMA_OPTIONS_ERROR; } next->coder->alignment.multiple = next->coder->options->alignment; next->coder->subfilter.allow = next->coder->options->allow_subfilters; subblock_size_limit = next->coder->options->subblock_data_size; } else { next->coder->alignment.multiple = LZMA_SUBBLOCK_ALIGNMENT_DEFAULT; next->coder->subfilter.allow = false; subblock_size_limit = LZMA_SUBBLOCK_DATA_SIZE_DEFAULT; } return_if_error(subblock_data_size(next->coder, allocator, subblock_size_limit)); return lzma_next_filter_init( &next->coder->next, allocator, filters + 1); }