// SPDX-License-Identifier: 0BSD /////////////////////////////////////////////////////////////////////////////// // /// \file crc32.c /// \brief CRC32 calculation // // Authors: Lasse Collin // Ilya Kurdyukov // Hans Jansen // /////////////////////////////////////////////////////////////////////////////// #include "check.h" #include "crc_common.h" #if defined(CRC_X86_CLMUL) # define BUILDING_CRC32_CLMUL # include "crc_x86_clmul.h" #elif defined(CRC32_ARM64) # include "crc32_arm64.h" #endif #ifdef CRC32_GENERIC /////////////////// // Generic CRC32 // /////////////////// static uint32_t crc32_generic(const uint8_t *buf, size_t size, uint32_t crc) { crc = ~crc; #ifdef WORDS_BIGENDIAN crc = bswap32(crc); #endif if (size > 8) { // Fix the alignment, if needed. The if statement above // ensures that this won't read past the end of buf[]. while ((uintptr_t)(buf) & 7) { crc = lzma_crc32_table[0][*buf++ ^ A(crc)] ^ S8(crc); --size; } // Calculate the position where to stop. const uint8_t *const limit = buf + (size & ~(size_t)(7)); // Calculate how many bytes must be calculated separately // before returning the result. size &= (size_t)(7); // Calculate the CRC32 using the slice-by-eight algorithm. while (buf < limit) { crc ^= aligned_read32ne(buf); buf += 4; crc = lzma_crc32_table[7][A(crc)] ^ lzma_crc32_table[6][B(crc)] ^ lzma_crc32_table[5][C(crc)] ^ lzma_crc32_table[4][D(crc)]; const uint32_t tmp = aligned_read32ne(buf); buf += 4; // At least with some compilers, it is critical for // performance, that the crc variable is XORed // between the two table-lookup pairs. crc = lzma_crc32_table[3][A(tmp)] ^ lzma_crc32_table[2][B(tmp)] ^ crc ^ lzma_crc32_table[1][C(tmp)] ^ lzma_crc32_table[0][D(tmp)]; } } while (size-- != 0) crc = lzma_crc32_table[0][*buf++ ^ A(crc)] ^ S8(crc); #ifdef WORDS_BIGENDIAN crc = bswap32(crc); #endif return ~crc; } #endif #if defined(CRC32_GENERIC) && defined(CRC32_ARCH_OPTIMIZED) ////////////////////////// // Function dispatching // ////////////////////////// // If both the generic and arch-optimized implementations are built, then // the function to use is selected at runtime because the system running // the binary might not have the arch-specific instruction set extension(s) // available. The three dispatch methods in order of priority: // // 1. Indirect function (ifunc). This method is slightly more efficient // than the constructor method because it will change the entry in the // Procedure Linkage Table (PLT) for the function either at load time or // at the first call. This avoids having to call the function through a // function pointer and will treat the function call like a regular call // through the PLT. ifuncs are created by using // __attribute__((__ifunc__("resolver"))) on a function which has no // body. The "resolver" is the name of the function that chooses at // runtime which implementation to use. // // 2. Constructor. This method uses __attribute__((__constructor__)) to // set crc32_func at load time. This avoids extra computation (and any // unlikely threading bugs) on the first call to lzma_crc32() to decide // which implementation should be used. // // 3. First Call Resolution. On the very first call to lzma_crc32(), the // call will be directed to crc32_dispatch() instead. This will set the // appropriate implementation function and will not be called again. // This method does not use any kind of locking but is safe because if // multiple threads run the dispatcher simultaneously then they will all // set crc32_func to the same value. typedef uint32_t (*crc32_func_type)( const uint8_t *buf, size_t size, uint32_t crc); // Clang 16.0.0 and older has a bug where it marks the ifunc resolver // function as unused since it is static and never used outside of // __attribute__((__ifunc__())). #if defined(CRC_USE_IFUNC) && defined(__clang__) # pragma GCC diagnostic push # pragma GCC diagnostic ignored "-Wunused-function" #endif // This resolver is shared between all three dispatch methods. It serves as // the ifunc resolver if ifunc is supported, otherwise it is called as a // regular function by the constructor or first call resolution methods. static crc32_func_type crc32_resolve(void) { return is_arch_extension_supported() ? &crc32_arch_optimized : &crc32_generic; } #if defined(CRC_USE_IFUNC) && defined(__clang__) # pragma GCC diagnostic pop #endif #ifndef CRC_USE_IFUNC #ifdef HAVE_FUNC_ATTRIBUTE_CONSTRUCTOR // Constructor method. # define CRC32_SET_FUNC_ATTR __attribute__((__constructor__)) static crc32_func_type crc32_func; #else // First Call Resolution method. # define CRC32_SET_FUNC_ATTR static uint32_t crc32_dispatch(const uint8_t *buf, size_t size, uint32_t crc); static crc32_func_type crc32_func = &crc32_dispatch; #endif CRC32_SET_FUNC_ATTR static void crc32_set_func(void) { crc32_func = crc32_resolve(); return; } #ifndef HAVE_FUNC_ATTRIBUTE_CONSTRUCTOR static uint32_t crc32_dispatch(const uint8_t *buf, size_t size, uint32_t crc) { // When __attribute__((__ifunc__(...))) and // __attribute__((__constructor__)) isn't supported, set the // function pointer without any locking. If multiple threads run // the detection code in parallel, they will all end up setting // the pointer to the same value. This avoids the use of // mythread_once() on every call to lzma_crc32() but this likely // isn't strictly standards compliant. Let's change it if it breaks. crc32_set_func(); return crc32_func(buf, size, crc); } #endif #endif #endif #ifdef CRC_USE_IFUNC extern LZMA_API(uint32_t) lzma_crc32(const uint8_t *buf, size_t size, uint32_t crc) __attribute__((__ifunc__("crc32_resolve"))); #else extern LZMA_API(uint32_t) lzma_crc32(const uint8_t *buf, size_t size, uint32_t crc) { #if defined(CRC32_GENERIC) && defined(CRC32_ARCH_OPTIMIZED) // On x86-64, if CLMUL is available, it is the best for non-tiny // inputs, being over twice as fast as the generic slice-by-four // version. However, for size <= 16 it's different. In the extreme // case of size == 1 the generic version can be five times faster. // At size >= 8 the CLMUL starts to become reasonable. It // varies depending on the alignment of buf too. // // The above doesn't include the overhead of mythread_once(). // At least on x86-64 GNU/Linux, pthread_once() is very fast but // it still makes lzma_crc32(buf, 1, crc) 50-100 % slower. When // size reaches 12-16 bytes the overhead becomes negligible. // // So using the generic version for size <= 16 may give better // performance with tiny inputs but if such inputs happen rarely // it's not so obvious because then the lookup table of the // generic version may not be in the processor cache. #ifdef CRC_USE_GENERIC_FOR_SMALL_INPUTS if (size <= 16) return crc32_generic(buf, size, crc); #endif /* #ifndef HAVE_FUNC_ATTRIBUTE_CONSTRUCTOR // See crc32_dispatch(). This would be the alternative which uses // locking and doesn't use crc32_dispatch(). Note that on Windows // this method needs Vista threads. mythread_once(crc64_set_func); #endif */ return crc32_func(buf, size, crc); #elif defined(CRC32_ARCH_OPTIMIZED) return crc32_arch_optimized(buf, size, crc); #else return crc32_generic(buf, size, crc); #endif } #endif