// SPDX-License-Identifier: 0BSD /////////////////////////////////////////////////////////////////////////////// // /// \file memcmplen.h /// \brief Optimized comparison of two buffers // // Author: Lasse Collin // /////////////////////////////////////////////////////////////////////////////// #ifndef LZMA_MEMCMPLEN_H #define LZMA_MEMCMPLEN_H #include "common.h" #ifdef HAVE_IMMINTRIN_H # include #endif // Only include if it is needed. The header is only needed // on Windows when using an MSVC compatible compiler. The Intel compiler // can use the intrinsics without the header file. #if defined(TUKLIB_FAST_UNALIGNED_ACCESS) \ && defined(_MSC_VER) \ && (defined(_M_X64) \ || defined(_M_ARM64) || defined(_M_ARM64EC)) \ && !defined(__INTEL_COMPILER) # include #endif /// Find out how many equal bytes the two buffers have. /// /// \param buf1 First buffer /// \param buf2 Second buffer /// \param len How many bytes have already been compared and will /// be assumed to match /// \param limit How many bytes to compare at most, including the /// already-compared bytes. This must be significantly /// smaller than UINT32_MAX to avoid integer overflows. /// Up to LZMA_MEMCMPLEN_EXTRA bytes may be read past /// the specified limit from both buf1 and buf2. /// /// \return Number of equal bytes in the buffers is returned. /// This is always at least len and at most limit. /// /// \note LZMA_MEMCMPLEN_EXTRA defines how many extra bytes may be read. /// It's rounded up to 2^n. This extra amount needs to be /// allocated in the buffers being used. It needs to be /// initialized too to keep Valgrind quiet. static lzma_always_inline uint32_t lzma_memcmplen(const uint8_t *buf1, const uint8_t *buf2, uint32_t len, uint32_t limit) { assert(len <= limit); assert(limit <= UINT32_MAX / 2); #if defined(TUKLIB_FAST_UNALIGNED_ACCESS) \ && (((TUKLIB_GNUC_REQ(3, 4) || defined(__clang__)) \ && (defined(__x86_64__) \ || defined(__aarch64__))) \ || (defined(__INTEL_COMPILER) && defined(__x86_64__)) \ || (defined(__INTEL_COMPILER) && defined(_M_X64)) \ || (defined(_MSC_VER) && (defined(_M_X64) \ || defined(_M_ARM64) || defined(_M_ARM64EC)))) // This is only for x86-64 and ARM64 for now. This might be fine on // other 64-bit processors too. On big endian one should use xor // instead of subtraction and switch to __builtin_clzll(). // // Reasons to use subtraction instead of xor: // // - On some x86-64 processors (Intel Sandy Bridge to Tiger Lake), // sub+jz and sub+jnz can be fused but xor+jz or xor+jnz cannot. // Thus using subtraction has potential to be a tiny amount faster // since the code checks if the quotient is non-zero. // // - Some processors (Intel Pentium 4) used to have more ALU // resources for add/sub instructions than and/or/xor. // // The processor info is based on Agner Fog's microarchitecture.pdf // version 2023-05-26. https://www.agner.org/optimize/ #define LZMA_MEMCMPLEN_EXTRA 8 while (len < limit) { const uint64_t x = read64ne(buf1 + len) - read64ne(buf2 + len); if (x != 0) { // MSVC or Intel C compiler on Windows # if defined(_MSC_VER) || defined(__INTEL_COMPILER) unsigned long tmp; _BitScanForward64(&tmp, x); len += (uint32_t)tmp >> 3; // GCC, Clang, or Intel C compiler # else len += (uint32_t)__builtin_ctzll(x) >> 3; # endif return my_min(len, limit); } len += 8; } return limit; #elif defined(TUKLIB_FAST_UNALIGNED_ACCESS) \ && defined(HAVE__MM_MOVEMASK_EPI8) \ && (defined(__SSE2__) \ || (defined(_MSC_VER) && defined(_M_IX86_FP) \ && _M_IX86_FP >= 2)) // NOTE: This will use 128-bit unaligned access which // TUKLIB_FAST_UNALIGNED_ACCESS wasn't meant to permit, // but it's convenient here since this is x86-only. // // SSE2 version for 32-bit and 64-bit x86. On x86-64 the above // version is sometimes significantly faster and sometimes // slightly slower than this SSE2 version, so this SSE2 // version isn't used on x86-64. # define LZMA_MEMCMPLEN_EXTRA 16 while (len < limit) { const uint32_t x = 0xFFFF ^ (uint32_t)_mm_movemask_epi8( _mm_cmpeq_epi8( _mm_loadu_si128((const __m128i *)(buf1 + len)), _mm_loadu_si128((const __m128i *)(buf2 + len)))); if (x != 0) { len += ctz32(x); return my_min(len, limit); } len += 16; } return limit; #elif defined(TUKLIB_FAST_UNALIGNED_ACCESS) && !defined(WORDS_BIGENDIAN) // Generic 32-bit little endian method # define LZMA_MEMCMPLEN_EXTRA 4 while (len < limit) { uint32_t x = read32ne(buf1 + len) - read32ne(buf2 + len); if (x != 0) { if ((x & 0xFFFF) == 0) { len += 2; x >>= 16; } if ((x & 0xFF) == 0) ++len; return my_min(len, limit); } len += 4; } return limit; #elif defined(TUKLIB_FAST_UNALIGNED_ACCESS) && defined(WORDS_BIGENDIAN) // Generic 32-bit big endian method # define LZMA_MEMCMPLEN_EXTRA 4 while (len < limit) { uint32_t x = read32ne(buf1 + len) ^ read32ne(buf2 + len); if (x != 0) { if ((x & 0xFFFF0000) == 0) { len += 2; x <<= 16; } if ((x & 0xFF000000) == 0) ++len; return my_min(len, limit); } len += 4; } return limit; #else // Simple portable version that doesn't use unaligned access. # define LZMA_MEMCMPLEN_EXTRA 0 while (len < limit && buf1[len] == buf2[len]) ++len; return len; #endif } #endif