// SPDX-License-Identifier: 0BSD /////////////////////////////////////////////////////////////////////////////// // /// \file test_filter_flags.c /// \brief Tests Filter Flags coders // // Authors: Jia Tan // Lasse Collin // /////////////////////////////////////////////////////////////////////////////// #include "tests.h" // FIXME: This is from src/liblzma/common/common.h but it cannot be // included here. This constant is needed in only a few files, perhaps // move it to some other internal header or create a new one? #define LZMA_FILTER_RESERVED_START (LZMA_VLI_C(1) << 62) #if defined(HAVE_ENCODERS) // No tests are run without encoders, so init the global filters // only when the encoders are enabled. static lzma_filter lzma1_filter = { LZMA_FILTER_LZMA1, NULL }; static lzma_filter lzma2_filter = { LZMA_FILTER_LZMA2, NULL }; static lzma_filter delta_filter = { LZMA_FILTER_DELTA, NULL }; static lzma_filter bcj_filters_encoders[] = { #ifdef HAVE_ENCODER_X86 { LZMA_FILTER_X86, NULL }, #endif #ifdef HAVE_ENCODER_POWERPC { LZMA_FILTER_POWERPC, NULL }, #endif #ifdef HAVE_ENCODER_IA64 { LZMA_FILTER_IA64, NULL }, #endif #ifdef HAVE_ENCODER_ARM { LZMA_FILTER_ARM, NULL }, #endif #ifdef HAVE_ENCODER_ARM64 { LZMA_FILTER_ARM64, NULL }, #endif #ifdef HAVE_ENCODER_ARMTHUMB { LZMA_FILTER_ARMTHUMB, NULL }, #endif #ifdef HAVE_ENCODER_SPARC { LZMA_FILTER_SPARC, NULL }, #endif #ifdef HAVE_ENCODER_RISCV { LZMA_FILTER_RISCV, NULL }, #endif { LZMA_VLI_UNKNOWN, NULL } }; // HAVE_ENCODERS ifdef not terminated here because decoders are // only used if encoders are, but encoders can still be used // even if decoders are not. #ifdef HAVE_DECODERS static lzma_filter bcj_filters_decoders[] = { #ifdef HAVE_DECODER_X86 { LZMA_FILTER_X86, NULL }, #endif #ifdef HAVE_DECODER_POWERPC { LZMA_FILTER_POWERPC, NULL }, #endif #ifdef HAVE_DECODER_IA64 { LZMA_FILTER_IA64, NULL }, #endif #ifdef HAVE_DECODER_ARM { LZMA_FILTER_ARM, NULL }, #endif #ifdef HAVE_DECODER_ARM64 { LZMA_FILTER_ARM64, NULL }, #endif #ifdef HAVE_DECODER_ARMTHUMB { LZMA_FILTER_ARMTHUMB, NULL }, #endif #ifdef HAVE_DECODER_SPARC { LZMA_FILTER_SPARC, NULL }, #endif #ifdef HAVE_DECODER_RISCV { LZMA_FILTER_RISCV, NULL }, #endif { LZMA_VLI_UNKNOWN, NULL } }; #endif #endif static void test_lzma_filter_flags_size(void) { #ifndef HAVE_ENCODERS assert_skip("Encoder support disabled"); #else // For each supported filter, test that the size can be calculated // and that the size calculated is reasonable. A reasonable size // must be greater than 0, but less than the maximum size for the // block header. uint32_t size = 0; if (lzma_filter_encoder_is_supported(LZMA_FILTER_LZMA1)) { // LZMA1 isn't supported in .xz so we get LZMA_PROG_ERROR. assert_lzma_ret(lzma_filter_flags_size(&size, &lzma1_filter), LZMA_PROG_ERROR); } if (lzma_filter_encoder_is_supported(LZMA_FILTER_LZMA2)) { assert_lzma_ret(lzma_filter_flags_size(&size, &lzma2_filter), LZMA_OK); assert_true(size != 0 && size < LZMA_BLOCK_HEADER_SIZE_MAX); } for (size_t i = 0; bcj_filters_encoders[i].id != LZMA_VLI_UNKNOWN; ++i) { assert_lzma_ret(lzma_filter_flags_size(&size, &bcj_filters_encoders[i]), LZMA_OK); assert_true(size != 0 && size < LZMA_BLOCK_HEADER_SIZE_MAX); } if (lzma_filter_encoder_is_supported(LZMA_FILTER_DELTA)) { assert_lzma_ret(lzma_filter_flags_size(&size, &delta_filter), LZMA_OK); assert_true(size != 0 && size < LZMA_BLOCK_HEADER_SIZE_MAX); } // Test invalid Filter IDs lzma_filter bad_filter = { 2, NULL }; assert_lzma_ret(lzma_filter_flags_size(&size, &bad_filter), LZMA_OPTIONS_ERROR); bad_filter.id = LZMA_VLI_MAX; assert_lzma_ret(lzma_filter_flags_size(&size, &bad_filter), LZMA_PROG_ERROR); bad_filter.id = LZMA_FILTER_RESERVED_START; assert_lzma_ret(lzma_filter_flags_size(&size, &bad_filter), LZMA_PROG_ERROR); #endif } // Helper function for test_lzma_filter_flags_encode. // The should_encode parameter represents if the encoding operation // is expected to fail. // Avoid data -> encode -> decode -> compare to data. // Instead create expected encoding and compare to result from // lzma_filter_flags_encode. // Filter Flags in .xz are encoded as: // |Filter ID (VLI)|Size of Properties (VLI)|Filter Properties| #if defined(HAVE_ENCODERS) && defined(HAVE_DECODERS) static void verify_filter_flags_encode(lzma_filter *filter, bool should_encode) { uint32_t size = 0; // First calculate the size of Filter Flags to know how much // memory to allocate to hold the encoded Filter Flags assert_lzma_ret(lzma_filter_flags_size(&size, filter), LZMA_OK); uint8_t *encoded_out = tuktest_malloc(size); size_t out_pos = 0; if (!should_encode) { assert_false(lzma_filter_flags_encode(filter, encoded_out, &out_pos, size) == LZMA_OK); return; } // Next encode the Filter Flags for the provided filter assert_lzma_ret(lzma_filter_flags_encode(filter, encoded_out, &out_pos, size), LZMA_OK); assert_uint_eq(size, out_pos); // Next decode the VLI for the Filter ID and verify it matches // the expected Filter ID size_t filter_id_vli_size = 0; lzma_vli filter_id = 0; assert_lzma_ret(lzma_vli_decode(&filter_id, NULL, encoded_out, &filter_id_vli_size, size), LZMA_OK); assert_uint_eq(filter->id, filter_id); // Next decode the Size of Properties and ensure it equals // the expected size. // Expected size should be: // total filter flag length - size of filter id VLI + size of // property size VLI // Not verifying the contents of Filter Properties since // that belongs in a different test size_t size_of_properties_vli_size = 0; lzma_vli size_of_properties = 0; assert_lzma_ret(lzma_vli_decode(&size_of_properties, NULL, encoded_out + filter_id_vli_size, &size_of_properties_vli_size, size), LZMA_OK); assert_uint_eq(size - (size_of_properties_vli_size + filter_id_vli_size), size_of_properties); } #endif static void test_lzma_filter_flags_encode(void) { #if !defined(HAVE_ENCODERS) || !defined(HAVE_DECODERS) assert_skip("Encoder or decoder support disabled"); #else // No test for LZMA1 since the .xz format does not support LZMA1 // and so the flags cannot be encoded for that filter if (lzma_filter_encoder_is_supported(LZMA_FILTER_LZMA2)) { // Test with NULL options that should fail lzma_options_lzma *options = lzma2_filter.options; lzma2_filter.options = NULL; verify_filter_flags_encode(&lzma2_filter, false); // Place options back in the filter, and test should pass lzma2_filter.options = options; verify_filter_flags_encode(&lzma2_filter, true); } // NOTE: Many BCJ filters require that start_offset is a multiple // of some power of two. The Filter Flags encoder and decoder don't // completely validate the options and thus 257 passes the tests // with all BCJ filters. It would be caught when initializing // a filter chain encoder or decoder. lzma_options_bcj bcj_options = { .start_offset = 257 }; for (size_t i = 0; bcj_filters_encoders[i].id != LZMA_VLI_UNKNOWN; ++i) { // NULL options should pass for bcj filters verify_filter_flags_encode(&bcj_filters_encoders[i], true); lzma_filter bcj_with_options = { bcj_filters_encoders[i].id, &bcj_options }; verify_filter_flags_encode(&bcj_with_options, true); } if (lzma_filter_encoder_is_supported(LZMA_FILTER_DELTA)) { lzma_options_delta delta_opts_below_min = { .type = LZMA_DELTA_TYPE_BYTE, .dist = LZMA_DELTA_DIST_MIN - 1 }; lzma_options_delta delta_opts_above_max = { .type = LZMA_DELTA_TYPE_BYTE, .dist = LZMA_DELTA_DIST_MAX + 1 }; verify_filter_flags_encode(&delta_filter, true); lzma_filter delta_filter_bad_options = { LZMA_FILTER_DELTA, &delta_opts_below_min }; // Next test error case using minimum - 1 delta distance verify_filter_flags_encode(&delta_filter_bad_options, false); // Next test error case using maximum + 1 delta distance delta_filter_bad_options.options = &delta_opts_above_max; verify_filter_flags_encode(&delta_filter_bad_options, false); // Next test NULL case delta_filter_bad_options.options = NULL; verify_filter_flags_encode(&delta_filter_bad_options, false); } // Test expected failing cases lzma_filter bad_filter = { LZMA_FILTER_RESERVED_START, NULL }; size_t out_pos = 0; size_t out_size = LZMA_BLOCK_HEADER_SIZE_MAX; uint8_t out[LZMA_BLOCK_HEADER_SIZE_MAX]; // Filter ID outside of valid range assert_lzma_ret(lzma_filter_flags_encode(&bad_filter, out, &out_pos, out_size), LZMA_PROG_ERROR); out_pos = 0; bad_filter.id = LZMA_VLI_MAX + 1; assert_lzma_ret(lzma_filter_flags_encode(&bad_filter, out, &out_pos, out_size), LZMA_PROG_ERROR); out_pos = 0; // Invalid Filter ID bad_filter.id = 2; assert_lzma_ret(lzma_filter_flags_encode(&bad_filter, out, &out_pos, out_size), LZMA_OPTIONS_ERROR); out_pos = 0; // Out size too small if (lzma_filter_encoder_is_supported(LZMA_FILTER_LZMA2)) { uint32_t bad_size = 0; // First test with 0 output size assert_lzma_ret(lzma_filter_flags_encode( &lzma2_filter, out, &out_pos, 0), LZMA_PROG_ERROR); // Next calculate the size needed to encode and // use less than that assert_lzma_ret(lzma_filter_flags_size(&bad_size, &lzma2_filter), LZMA_OK); assert_lzma_ret(lzma_filter_flags_encode( &lzma2_filter, out, &out_pos, bad_size - 1), LZMA_PROG_ERROR); out_pos = 0; } // Invalid options if (lzma_filter_encoder_is_supported(LZMA_FILTER_DELTA)) { bad_filter.id = LZMA_FILTER_DELTA; // First test with NULL options assert_lzma_ret(lzma_filter_flags_encode(&bad_filter, out, &out_pos, out_size), LZMA_PROG_ERROR); out_pos = 0; // Next test with invalid options lzma_options_delta bad_options = { .dist = LZMA_DELTA_DIST_MAX + 1, .type = LZMA_DELTA_TYPE_BYTE }; bad_filter.options = &bad_options; assert_lzma_ret(lzma_filter_flags_encode(&bad_filter, out, &out_pos, out_size), LZMA_PROG_ERROR); } #endif } // Helper function for test_lzma_filter_flags_decode. // Encodes the filter_in without using lzma_filter_flags_encode. // Leaves the specific assertions of filter_out options to the caller // because it is agnostic to the type of options used in the call #if defined(HAVE_ENCODERS) && defined(HAVE_DECODERS) static void verify_filter_flags_decode(const lzma_filter *filter_in, lzma_filter *filter_out) { uint32_t total_size = 0; assert_lzma_ret(lzma_filter_flags_size(&total_size, filter_in), LZMA_OK); assert_uint(total_size, >, 0); uint8_t *filter_flag_buffer = tuktest_malloc(total_size); uint32_t properties_size = 0; size_t out_pos = 0; size_t in_pos = 0; assert_lzma_ret(lzma_properties_size(&properties_size, filter_in), LZMA_OK); assert_lzma_ret(lzma_vli_encode(filter_in->id, NULL, filter_flag_buffer, &out_pos, total_size), LZMA_OK); assert_lzma_ret(lzma_vli_encode(properties_size, NULL, filter_flag_buffer, &out_pos, total_size), LZMA_OK); assert_lzma_ret(lzma_properties_encode(filter_in, filter_flag_buffer + out_pos), LZMA_OK); assert_lzma_ret(lzma_filter_flags_decode(filter_out, NULL, filter_flag_buffer, &in_pos, total_size), LZMA_OK); assert_uint_eq(filter_in->id, filter_out->id); } #endif static void test_lzma_filter_flags_decode(void) { #if !defined(HAVE_ENCODERS) || !defined(HAVE_DECODERS) assert_skip("Encoder or decoder support disabled"); #else // For each filter, only run the decoder test if both the encoder // and decoder are enabled. This is because verify_filter_flags_decode // uses lzma_filter_flags_size which requires the encoder. if (lzma_filter_decoder_is_supported(LZMA_FILTER_LZMA2) && lzma_filter_encoder_is_supported(LZMA_FILTER_LZMA2)) { lzma_filter lzma2_decoded = { LZMA_FILTER_LZMA2, NULL }; verify_filter_flags_decode(&lzma2_filter, &lzma2_decoded); lzma_options_lzma *expected = lzma2_filter.options; lzma_options_lzma *decoded = lzma2_decoded.options; // Only the dictionary size is encoded and decoded // so only compare those assert_uint_eq(decoded->dict_size, expected->dict_size); // The decoded options must be freed by the caller free(decoded); } for (size_t i = 0; bcj_filters_decoders[i].id != LZMA_VLI_UNKNOWN; ++i) { if (lzma_filter_encoder_is_supported( bcj_filters_decoders[i].id)) { lzma_filter bcj_decoded = { bcj_filters_decoders[i].id, NULL }; lzma_filter bcj_encoded = { bcj_filters_decoders[i].id, NULL }; // First test without options verify_filter_flags_decode(&bcj_encoded, &bcj_decoded); assert_true(bcj_decoded.options == NULL); // Next test with start_offset. // // NOTE: The encoder and decoder don't verify if // the start_offset is valid for the filter. Only // the encoder or decoder initialization does. lzma_options_bcj options = { .start_offset = 257 }; bcj_encoded.options = &options; verify_filter_flags_decode(&bcj_encoded, &bcj_decoded); lzma_options_bcj *decoded_opts = bcj_decoded.options; assert_uint_eq(decoded_opts->start_offset, options.start_offset); free(decoded_opts); } } if (lzma_filter_decoder_is_supported(LZMA_FILTER_DELTA) && lzma_filter_encoder_is_supported(LZMA_FILTER_DELTA)) { lzma_filter delta_decoded = { LZMA_FILTER_DELTA, NULL }; verify_filter_flags_decode(&delta_filter, &delta_decoded); lzma_options_delta *expected = delta_filter.options; lzma_options_delta *decoded = delta_decoded.options; assert_uint_eq(expected->dist, decoded->dist); assert_uint_eq(expected->type, decoded->type); free(decoded); } // Test expected failing cases uint8_t bad_encoded_filter[LZMA_BLOCK_HEADER_SIZE_MAX]; lzma_filter bad_filter; // Filter ID outside of valid range lzma_vli bad_filter_id = LZMA_FILTER_RESERVED_START; size_t bad_encoded_out_pos = 0; size_t in_pos = 0; assert_lzma_ret(lzma_vli_encode(bad_filter_id, NULL, bad_encoded_filter, &bad_encoded_out_pos, LZMA_BLOCK_HEADER_SIZE_MAX), LZMA_OK); assert_lzma_ret(lzma_filter_flags_decode(&bad_filter, NULL, bad_encoded_filter, &in_pos, LZMA_BLOCK_HEADER_SIZE_MAX), LZMA_DATA_ERROR); bad_encoded_out_pos = 0; in_pos = 0; // Invalid Filter ID bad_filter_id = 2; bad_encoded_out_pos = 0; in_pos = 0; assert_lzma_ret(lzma_vli_encode(bad_filter_id, NULL, bad_encoded_filter, &bad_encoded_out_pos, LZMA_BLOCK_HEADER_SIZE_MAX), LZMA_OK); // Next encode Size of Properties with the value of 0 assert_lzma_ret(lzma_vli_encode(0, NULL, bad_encoded_filter, &bad_encoded_out_pos, LZMA_BLOCK_HEADER_SIZE_MAX), LZMA_OK); // Decode should fail on bad Filter ID assert_lzma_ret(lzma_filter_flags_decode(&bad_filter, NULL, bad_encoded_filter, &in_pos, LZMA_BLOCK_HEADER_SIZE_MAX), LZMA_OPTIONS_ERROR); bad_encoded_out_pos = 0; in_pos = 0; // Outsize too small // Encode the LZMA2 filter normally, but then set // the out size when decoding as too small if (lzma_filter_encoder_is_supported(LZMA_FILTER_LZMA2) && lzma_filter_decoder_is_supported(LZMA_FILTER_LZMA2)) { uint32_t filter_flag_size = 0; assert_lzma_ret(lzma_filter_flags_size(&filter_flag_size, &lzma2_filter), LZMA_OK); assert_lzma_ret(lzma_filter_flags_encode(&lzma2_filter, bad_encoded_filter, &bad_encoded_out_pos, LZMA_BLOCK_HEADER_SIZE_MAX), LZMA_OK); assert_lzma_ret(lzma_filter_flags_decode(&bad_filter, NULL, bad_encoded_filter, &in_pos, filter_flag_size - 1), LZMA_DATA_ERROR); } #endif } extern int main(int argc, char **argv) { tuktest_start(argc, argv); #ifdef HAVE_ENCODERS // Only init filter options if encoder is supported because decoder // tests requires encoder support, so the decoder tests will only // run if for a given filter both the encoder and decoder are enabled. if (lzma_filter_encoder_is_supported(LZMA_FILTER_LZMA1)) { lzma_options_lzma *options = tuktest_malloc( sizeof(lzma_options_lzma)); lzma_lzma_preset(options, LZMA_PRESET_DEFAULT); lzma1_filter.options = options; } if (lzma_filter_encoder_is_supported(LZMA_FILTER_LZMA2)) { lzma_options_lzma *options = tuktest_malloc( sizeof(lzma_options_lzma)); lzma_lzma_preset(options, LZMA_PRESET_DEFAULT); lzma2_filter.options = options; } if (lzma_filter_encoder_is_supported(LZMA_FILTER_DELTA)) { lzma_options_delta *options = tuktest_malloc( sizeof(lzma_options_delta)); options->dist = LZMA_DELTA_DIST_MIN; options->type = LZMA_DELTA_TYPE_BYTE; delta_filter.options = options; } #endif tuktest_run(test_lzma_filter_flags_size); tuktest_run(test_lzma_filter_flags_encode); tuktest_run(test_lzma_filter_flags_decode); return tuktest_end(); }