opt_mode == MODE_COMPRESS isn't possible when HAVE_ENCODERS isn't
defined. Thus, when *encoding*, the message about *decoder* memory
usage is possible to show only when both encoder and decoder have
been built.
Since the message is shown only at V_DEBUG, skip the memusage
calculation if verbosity level isn't high enough.
Fixes: 5f0c5a04388f8334962c70bc37a8c2ff8f605e0a
It's undefined behavior. The result wasn't ever used as it occurred
in the last iteration of a loop.
Clang 17 with -fsanitize=address,undefined:
$ src/xz/xz --block-list=123
src/xz/args.c:164:12: runtime error: applying non-zero offset 1
to null pointer
Fixes: 88ccf47205d7f3aa314d358c72ef214f10f68b43
Co-authored-by: Sam James <sam@gentoo.org>
On macOS, we get:
```
signals.c: In function 'signals_init':
signals.c:76:17: error: conversion to 'sigset_t' {aka 'unsigned int'} from 'int' may change the sign of the result [-Werror=sign-conversion]
76 | sigaddset(&hooked_signals, sigs[i]);
| ^~~~~~~~~
signals.c:81:17: error: conversion to 'sigset_t' {aka 'unsigned int'} from 'int' may change the sign of the result [-Werror=sign-conversion]
81 | sigaddset(&hooked_signals, message_progress_sigs[i]);
| ^~~~~~~~~
signals.c:86:9: error: conversion to 'sigset_t' {aka 'unsigned int'} from 'int' may change the sign of the result [-Werror=sign-conversion]
86 | sigaddset(&hooked_signals, SIGTSTP);
| ^~~~~~~~~
```
We use `int` for `hooked_signals` but we can't just cast to whatever
`sigset_t` is because `sigset_t` is an opaque type. It's an unsigned int
on macOS. On macOS, `sigaddset` is implemented as a macro.
Just suppress -Wsign-conversion for `signals_init` for macOS given
there's no real nice way of fixing this.
Now that multi threaded encoding is the default, users do not need to
see a warning message everytime the number of threads is reduced. On
some machines, this could happen very often. It is not unreasonable for
users to need to set double verbose mode to see this kind of
information.
To see these warning messages -vv or --verbose --verbose must be passed
to set xz into the highest possible verbosity mode.
These warnings had caused automated testing frameworks to fail when they
expected no output to stderr.
Thanks to Sebastian Andrzej Siewior for reporting this and for the
initial version of the patch.
The previous Linux Landlock feature test assumed that having the
linux/landlock.h header file was enough. The new feature tests also
requires that prctl() and the required Landlock system calls are
supported.
If xz is given a directory, it should look like this:
$ xz /usr/bin
xz: /usr/bin: Is a directory, skipping
The Landlock rules didn't allow opening directories for reading:
$ xz /usr/bin
xz: /usr/bin: Permission denied
The simplest fix was to allow opening directories for reading.
While it's a bit silly to allow it solely for the error message,
it shouldn't make the sandbox significantly weaker.
The single-file use case (like when called from GNU tar) is
still as strict as possible: all Landlock restrictions are
enabled before (de)compression starts.
This makes these sandboxing methods stricter when no files are
created or deleted. That is, it's a middle ground between the
initial sandbox and the strictest single-file-to-stdout sandbox:
this allows opening files for reading but output has to go to stdout.
Linux 6.7 added support for ABI version 4 which restricts
TCP connections which xz won't need and thus those can be
forbidden now. Since the ABI version is handled at runtime,
supporting version 4 won't cause any compatibility issues.
Note that new enough kernel headers are required to get
version 4 support enabled at build time.
Landlock is now always used just like pledge(2) is: first in more
permissive mode and later (under certain common conditions) in
a strict mode that doesn't allow opening more files.
I put pledge(2) first in sandbox.c because it's the simplest API
to use and still somewhat fine-grained for basic applications.
So it's the simplest thing to understand for anyone reading sandbox.c.
Also explicitly initialize progress_automatic to make it clear
that it can be read before message_init() sets it. Static variable
was initialized to false by default already so this is only for
clarity.
This hopefully does more good than bad:
+ It's faster by default.
+ Only the threaded compressor creates files that
can be decompressed in threaded mode.
- Compression ratio is worse, usually not too much though.
When it matters, -T1 must be used.
- Memory usage increases.
- Scripts that assume single-threaded mode but don't use -T1 will
possibly use too much resources, for example, if they run
multiple xz processes in parallel to compress multiple files.
- Output from single-threaded and multi-threaded compressors
differ but such changes could happen for other reasons too
(they just haven't happened since 5.0.0).
Version 5.6.0 will be shown, even though upcoming alphas and betas
will be able to support this filter. 5.6.0 looks nicer in the output and
people shouldn't be encouraged to use an unstable version in production
in any way.
The new Filter ID is 0x0B.
Thanks to Chien Wong <m@xv97.com> for the initial version of the Filter,
the xz CLI updates, and the Autotools build system modifications.
Thanks to Igor Pavlov for his many contributions to the design of
the filter.
The new is_tty() will report if a file descriptor is a terminal or not.
On POSIX systems, it is a wrapper around isatty(). However, the native
Windows implementation of isatty() will return true for all character
devices, not just terminals. So is_tty() has a special case for Windows
so it can use alternative Windows API functions to determine if a file
descriptor is a terminal.
This fixes a bug with MSVC and MinGW-w64 builds that refused to read from
or write to non-terminal character devices because xz thought it was a
terminal. For instance:
xz foo -c > /dev/null
would fail because /dev/null was assumed to be a terminal.
The following command caused a segmentation fault:
xz -Fraw --lzma1 --files=foo
when foo was a valid file. The usage of --files or --files0 was not
being checked when compressing or decompressing in raw mode without a
suffix. The suffix checking code was meant to validate that all files
to be processed are "-" (if not writing to standard out), meaning the
data is only coming from standard in. In this case, there were no file
names to check since --files and --files0 store their file name in a
different place.
Later code assumed the suffix was set and caused a segmentation fault.
Now, the above command results in an error.
The previous version set opt_stdout, but this caused an issue with
copying an input file to standard out when decompressing an unknown file
type. The following needs to result in an error:
echo foo | xz -df
since -c, --stdout is not used. This fixes the previous error by not
setting opt_stdout.
This fixes a bug introduced in cc5aa9ab138beeecaee5a1e81197591893ee9ca0
when the suffix check was initially moved. This caused a situation that
previously worked:
echo foo | xz -Fraw --lzma1 | wc -c
to fail because the old code knew that this would write to standard out
so a suffix was not needed.