FUZZING_BUILD_MODE_UNSAFE_FOR_PRODUCTION is #defined when liblzma
is being built for fuzz testing.
Most fuzzed inputs would normally get rejected because of incorrect
CRC32 and the actual header decoding code wouldn't get fuzzed.
Disabling CRC32 checks avoids this problem. The fuzzer program
must still use LZMA_IGNORE_CHECK flag to disable verification of
integrity checks of uncompressed data.
The 0 got treated specially in a buggy way and as a result
the function did nothing. The API doc said that 0 was supposed
to return LZMA_PROG_ERROR but it didn't.
Now 0 is treated as if 1 had been specified. This is done because
0 is already used to indicate an error from lzma_memlimit_get()
and lzma_memusage().
In addition, lzma_memlimit_set() no longer checks that the new
limit is at least LZMA_MEMUSAGE_BASE. It's counter-productive
for the Index decoder and was actually needed only by the
auto decoder. Auto decoder has now been modified to check for
LZMA_MEMUSAGE_BASE.
It returned LZMA_PROG_ERROR, which was done to avoid zero as
the limit (because it's a special value elsewhere), but using
LZMA_PROG_ERROR is simply inconvenient and can cause bugs.
The fix/workaround is to treat 0 as if it were 1 byte. It's
effectively the same thing. The only weird consequence is
that then lzma_memlimit_get() will return 1 even when 0 was
specified as the limit.
This fixes a very rare corner case in xz --list where a specific
memory usage limit and a multi-stream file could print the
error message "Internal error (bug)" instead of saying that
the memory usage limit is too low.
Only one definition was visible in a translation unit.
It avoided a few casts and temp variables but seems that
this hack doesn't work with link-time optimizations in compilers
as it's not C99/C11 compliant.
Fixes:
http://www.mail-archive.com/xz-devel@tukaani.org/msg00279.html
lzma_index_dup() calls index_dup_stream() which, in case of
an error, calls index_stream_end() to free memory allocated
by index_stream_init(). However, it illogically didn't
actually free the memory. To make it logical, the tree
handling code was modified a bit in addition to changing
index_stream_end().
Thanks to Evan Nemerson for the bug report.
This way an invalid filter chain is detected at the Stream
encoder initialization instead of delaying it to the first
call to lzma_code() which triggers the initialization of
the actual filter encoder(s).
Note that this slightly changes how lzma_block_header_decode()
has been documented. Earlier it said that the .version is set
to the lowest required value, but now it says that the .version
field is kept unchanged if possible. In practice this doesn't
affect any old code, because before this commit the only
possible .version was 0.
This commit just adds the function. Its uses will be in
separate commits.
This hasn't been tested much yet and it's perhaps a bit early
to commit it but if there are bugs they should get found quite
quickly.
Thanks to Jun I Jin from Intel for help and for pointing out
that string comparison needs to be optimized in liblzma.
Now --block-list=SIZES works with in the threaded mode too,
although the performance is still bad due to the use of
LZMA_FULL_FLUSH instead of the new LZMA_FULL_BARRIER.
Now liblzma only uses "mythread" functions and types
which are defined in mythread.h matching the desired
threading method.
Before Windows Vista, there is no direct equivalent to
pthread condition variables. Since this package doesn't
use pthread_cond_broadcast(), pre-Vista threading can
still be kept quite simple. The pre-Vista code doesn't
use anything that wasn't already available in Windows 95,
so the binaries should run even on Windows 95 if someone
happens to care.
To avoid false positives when detecting .lzma files,
rare values in dictionary size and uncompressed size fields
were rejected. They will still be rejected if .lzma files
are decoded with lzma_auto_decoder(), but when using
lzma_alone_decoder() directly, such files will now be accepted.
Hopefully this is an OK compromise.
This doesn't affect xz because xz still has its own file
format detection code. This does affect lzmadec though.
So after this commit lzmadec will accept files that xz or
xz-emulating-lzma doesn't.
NOTE: lzma_alone_decoder() still won't decode all .lzma files
because liblzma's LZMA decoder doesn't support lc + lp > 4.
Reported here:
http://sourceforge.net/projects/lzmautils/forums/forum/708858/topic/7068827
This race condition could cause a deadlock if lzma_end() was
called before finishing the encoding. This can happen with
xz with debugging enabled (non-debugging version doesn't
call lzma_end() before exiting).
This adds lzma_get_progress() to liblzma and takes advantage
of it in xz.
lzma_get_progress() collects progress information from
the thread-specific structures so that fairly accurate
progress information is available to applications. Adding
a new function seemed to be a better way than making the
information directly available in lzma_stream (like total_in
and total_out are) because collecting the information requires
locking mutexes. It's waste of time to do it more often than
the up to date information is actually needed by an application.
There is a tiny risk of causing breakage: If an application
assigns lzma_stream.allocator to a non-const pointer, such
code won't compile anymore. I don't know why anyone would do
such a thing though, so in practice this shouldn't cause trouble.
Thanks to Jan Kratochvil for the patch.
Spot candidates by running these commands:
git ls-files |xargs perl -0777 -n \
-e 'while (/\b(then?|[iao]n|i[fst]|but|f?or|at|and|[dt]o)\s+\1\b/gims)' \
-e '{$n=($` =~ tr/\n/\n/ + 1); ($v=$&)=~s/\n/\\n/g; print "$ARGV:$n:$v\n"}'
Thanks to Jim Meyering for the original patch.
This is the simplest method to do threading, which splits
the uncompressed data into blocks and compresses them
independently from each other. There's room for improvement
especially to reduce the memory usage, but nevertheless,
this is a good start.
Empty Block was created if the input buffer was empty.
Empty Block wastes a few bytes of space, but more importantly
it triggers a bug in XZ Utils 5.0.1 and older when trying
to decompress such a file. 5.0.1 and older consider such
files to be corrupt. I thought that no encoder creates empty
Blocks when releasing 5.0.2 but I was wrong.
The biggest problem was that the integrity check type
wasn't validated, and e.g. lzma_easy_buffer_encode()
would create a corrupt .xz Stream if given an unsupported
Check ID. Luckily applications don't usually try to use
an unsupport Check ID, so this bug is unlikely to cause
many real-world problems.
It leaks old filter options structures (hundred bytes or so)
every time the lzma_stream is reinitialized. With the xz tool,
this happens when compressing multiple files.
If any of the reserved members in lzma_stream are non-zero
or non-NULL, LZMA_OPTIONS_ERROR is returned. It is possible
that a new feature in the future is indicated by just setting
a reserved member to some other value, so the old liblzma
version need to catch it as an unsupported feature.
With bad luck, lzma_code() could return LZMA_BUF_ERROR
when it shouldn't.
This has been here since the early days of liblzma.
It got triggered by the modifications made to the xz
tool in commit 18c10c30d2
but only when decompressing .lzma files. Somehow I managed
to miss testing that with Valgrind earlier.
This fixes <http://bugs.gentoo.org/show_bug.cgi?id=305591>.
Thanks to Rafał Mużyło for helping to debug it on IRC.
lzma_block.version has to be initialized even for
lzma_block_header_decode(). This way a future version
of liblzma won't allocate memory in a way that an old
application doesn't know how to free it.
The subtlety of this change is that all current apps
using lzma_block_header_decode() will keep working for
now, because the only possible version value is zero,
and lzma_block_header_decode() unconditionally sets the
version to zero even now. Unless fixed, these apps will
break in the future if a new version of the Block options
is ever needed.
This breaks API and ABI but most apps are not affected
since most apps don't use this part of the API. You will
get a compile error if you are using anything that got
broken.
Summary of changes:
- Ability to store Stream Flags, which are needed
for random-access reading in multi-Stream files.
- Separate function to set size of Stream Padding.
- Iterator structure makes it possible to read the same
lzma_index from multiple threads at the same time.
- A lot faster code to locate Blocks.
- Removed lzma_index_equal() without adding anything
to replace it. I don't know what it should do exactly
with the new features and what actually needs this
function in the first place other than test_index.c,
which now has its own code to compare lzma_indexes.
lzma_index_read() didn't skip over Stream Padding
if it was the first record in the Index.
lzma_index_cat() didn't combine small Indexes correctly.
The test suite was updated to check for these bugs.
These bugs didn't affect the xz command line tool or
most users of liblzma in any way.
The Index decoder code didn't perfectly match the API docs,
which said that *i will be set to point to the decoded Index
only after decoding has succeeded. The docs were a bit unclear
too.
Now the decoder will initially set *i to NULL. *i will be set
to point to the decoded Index once decoding has succeeded.
This simplifies applications too, since it avoids dangling
pointers.
I had hoped to keep liblzma as purely a compression
library as possible (e.g. file I/O will go into
a different library), but it seems that applications
linking agaisnt liblzma need some way to determine
the memory usage limit, and knowing the amount of RAM
is one reasonable way to help making such decisions.
Thanks to Jonathan Nieder for the original patch.
Originally the idea was that using LZMA_FULL_FLUSH
with Stream encoder would read the filter chain
from the same array that was used to intialize the
Stream encoder. Since most apps wouldn't use
LZMA_FULL_FLUSH, most apps wouldn't need to keep
the filter chain available after initializing the
Stream encoder. However, due to my mistake, it
actually required keeping the array always available.
Since setting the new filter chain via the array
used at initialization time is not a nice way to do
it for a couple of reasons, this commit ditches it
and introduces lzma_filters_update(). This new function
replaces also the "persistent" flag used by LZMA2
(and to-be-designed Subblock filter), which was also
an ugly thing to do.
Thanks to Alexey Tourbin for reminding me about the problem
that Stream encoder used to require keeping the filter
chain allocated.
This will be needed internally by liblzma once I fix
a design mistake in the encoder API. This function may
be useful to applications too so it's good to export it.
This replaces bswap.h and integer.h.
The tuklib module uses <byteswap.h> on GNU,
<sys/endian.h> on *BSDs and <sys/byteorder.h>
on Solaris, which may contain optimized code
like inline assembly.
Don't use libtool convenience libraries to avoid recently
discovered long-standing subtle but somewhat severe bugs
in libtool (at least 1.5.22 and 2.2.6 are affected). It
was found when porting XZ Utils to Windows
<http://lists.gnu.org/archive/html/libtool/2009-06/msg00070.html>
but the problem is significant also e.g. on GNU/Linux.
Unless --disable-shared is passed to configure, static
library built from a set of convenience libraries will
contain PIC objects. That is, while libtool builds non-PIC
objects too, only PIC objects will be used from the
convenience libraries. On 32-bit x86 (tested on mobile XP2400+),
using PIC instead of non-PIC makes the decompressor 10 % slower
with the default CFLAGS.
So while xz was linked against static liblzma by default,
it got the slower PIC objects unless --disable-shared was
used. I tend develop and benchmark with --disable-shared
due to faster build time, so I hadn't noticed the problem
in benchmarks earlier.
This commit also adds support for building Windows resources
into liblzma and executables.
liblzma tries to avoid useless free()/malloc() pairs in
initialization when multiple files are handled using the
same lzma_stream. This didn't work with filter chains
due to comparison of wrong pointers in lzma_next_coder_init(),
making liblzma think that no memory reallocation is needed
even when it actually is.
Easy way to trigger this bug is to decompress two files with
a single xz command. The first file should have e.g. x86+LZMA2
as the filter chain, and the second file just LZMA2.
Now configure.ac will get the version number directly from
src/liblzma/api/lzma/version.h. The intent is to reduce the
number of places where the version number is duplicated. In
future, support for displaying Git commit ID may be added too.
lzma_memlimit_encoder and lzma_memlimit_decoder to
lzma_raw_encoder_memlimit and lzma_raw_decoder_memlimit. :-(
Now it is fixed. Hopefully it doesn't cause too much trouble
to those who already thought API is stable.
Half of developers were already forgetting to use these
functions, which could have caused total breakage in some future
liblzma version or even now if --enable-small was used. Now
liblzma uses pthread_once() to do the initializations unless
it has been built with --disable-threads which make these
initializations thread-unsafe.
When --enable-small isn't used, liblzma currently gets needlessly
linked against libpthread (on systems that have it). While it is
stupid for now, liblzma will need threads in future anyway, so
this stupidity will be temporary only.
When --enable-small is used, different code CRC32 and CRC64 is
now used than without --enable-small. This made the resulting
binary slightly smaller, but the main reason was to clean it up
and to handle the lack of lzma_init_check().
The pkg-config file lzma.pc was renamed to liblzma.pc. I'm not
sure if it works correctly and portably for static linking
(Libs.private includes -pthread or other operating system
specific flags). Hopefully someone complains if it is bad.
lzma_rc_prices[] is now included as a precomputed array even
with --enable-small. It's just 128 bytes now that it uses uint8_t
instead of uint32_t. Smaller array seemed to be at least as fast
as the more bloated uint32_t array on x86; hopefully it's not bad
on other architectures.
- Updated to the latest, probably final file format version.
- Command line tool reworked to not use threads anymore.
Threading will probably go into liblzma anyway.
- Memory usage limit is now about 30 % for uncompression
and about 90 % for compression.
- Progress indicator with --verbose
- Simplified --help and full --long-help
- Upgraded to the last LGPLv2.1+ getopt_long from gnulib.
- Some bug fixes
Use LZMA_PROG_ERROR instead of LZMA_HEADER_ERROR if the Filter ID
is in the reserved range. This allows Block Header encoder to
detect unallowed Filter IDs, which is good for Stream encoder.
code from block_private.h to block_decoder.c. Now the Block
encoder doesn't need compressed_size and uncompressed_size
from lzma_block structure to be initialized.
LZMA_Alone files. Decoding of concatenated LZMA_Alone files is
intentionally not supported, so it is better to put this in
auto decoder than LZMA_Alone decoder.
broken. API has changed a lot and it will still change a
little more here and there. The command line tool doesn't
have all the required changes to reflect the API changes, so
it's easy to get "internal error" or trigger assertions.
specification. Simplify things by removing most of the
support for known uncompressed size in most places.
There are some miscellaneous changes here and there too.
The API of liblzma has got many changes and still some
more will be done soon. While most of the code has been
updated, some things are not fixed (the command line tool
will choke with invalid filter chain, if nothing else).
Subblock filter is somewhat broken for now. It will be
updated once the encoded format of the Subblock filter
has been decided.
encoder and decoder, and put the shared things to
block_private.h. Improved the checks a little so that
they may detect too big Compressed Size at initialization
time if lzma_options_block.total_size or .total_limit is
known.
Allow encoding and decoding Blocks with combinations of
fields that are not allowed by the file format specification.
Doing this requires that the application passes such a
combination in lzma_options_lzma; liblzma doesn't do that,
but it's not impossible that someone could find them useful
in some custom file format.
- Added lzma_memlimit_max() and lzma_memlimit_reached()
API functions.
- Added simple estimation of malloc()'s memory usage
overhead.
- Fixed integer overflow detection in lzma_memlimit_alloc().
- Made some white space cleanups and added more comments.
The description of lzma_memlimit_max() in memlimit.h is bad
and should be improved.