Some fixes to LZ encoder.

This commit is contained in:
Lasse Collin 2008-09-02 11:45:39 +03:00
parent ede675f9ac
commit fc68165745
3 changed files with 94 additions and 75 deletions

View File

@ -86,12 +86,16 @@ fill_window(lzma_coder *coder, lzma_allocator *allocator, const uint8_t *in,
if (coder->mf.read_pos >= coder->mf.size - coder->mf.keep_size_after)
move_window(&coder->mf);
// Maybe this is ugly, but lzma_mf uses uint32_t for most things
// (which I find cleanest), but we need size_t here when filling
// the history window.
size_t write_pos = coder->mf.write_pos;
size_t in_used;
lzma_ret ret;
if (coder->next.code == NULL) {
// Not using a filter, simply memcpy() as much as possible.
in_used = lzma_bufcpy(in, in_pos, in_size, coder->mf.buffer,
&coder->mf.write_pos, coder->mf.size);
&write_pos, coder->mf.size);
ret = action != LZMA_RUN && *in_pos == in_size
? LZMA_STREAM_END : LZMA_OK;
@ -100,11 +104,13 @@ fill_window(lzma_coder *coder, lzma_allocator *allocator, const uint8_t *in,
const size_t in_start = *in_pos;
ret = coder->next.code(coder->next.coder, allocator,
in, in_pos, in_size,
coder->mf.buffer, &coder->mf.write_pos,
coder->mf.buffer, &write_pos,
coder->mf.size, action);
in_used = *in_pos - in_start;
}
coder->mf.write_pos = write_pos;
// If end of stream has been reached or flushing completed, we allow
// the encoder to process all the input (that is, read_pos is allowed
// to reach write_pos). Otherwise we keep keep_size_after bytes
@ -181,9 +187,12 @@ static bool
lz_encoder_prepare(lzma_mf *mf, lzma_allocator *allocator,
const lzma_lz_options *lz_options)
{
// For now, the dictionary size is limited to 1.5 GiB. This may grow
// in the future if needed, but it needs a little more work than just
// changing this check.
if (lz_options->dictionary_size < LZMA_DICTIONARY_SIZE_MIN
|| lz_options->dictionary_size
> LZMA_DICTIONARY_SIZE_MAX
> (UINT32_C(1) << 30) + (UINT32_C(1) << 29)
|| lz_options->find_len_max
> lz_options->match_len_max)
return true;
@ -198,6 +207,13 @@ lz_encoder_prepare(lzma_mf *mf, lzma_allocator *allocator,
// memmove()s become more expensive when the size of the buffer
// increases, we reserve more space when a large dictionary is
// used to make the memmove() calls rarer.
//
// This works with dictionaries up to about 3 GiB. If bigger
// dictionary is wanted, some extra work is needed:
// - Several variables in lzma_mf have to be changed from uint32_t
// to size_t.
// - Memory usage calculation needs something too, e.g. use uint64_t
// for mf->size.
uint32_t reserve = lz_options->dictionary_size / 2;
if (reserve > (UINT32_C(1) << 30))
reserve /= 2;
@ -208,8 +224,6 @@ lz_encoder_prepare(lzma_mf *mf, lzma_allocator *allocator,
const uint32_t old_size = mf->size;
mf->size = mf->keep_size_before + reserve + mf->keep_size_after;
// FIXME Integer overflows
// Deallocate the old history buffer if it exists but has different
// size than what is needed now.
if (mf->buffer != NULL && old_size != mf->size) {
@ -220,7 +234,23 @@ lz_encoder_prepare(lzma_mf *mf, lzma_allocator *allocator,
// Match finder options
mf->match_len_max = lz_options->match_len_max;
mf->find_len_max = lz_options->find_len_max;
mf->cyclic_buffer_size = lz_options->dictionary_size + 1;
// cyclic_size has to stay smaller than 2 Gi. Note that this doesn't
// mean limitting dictionary size to less than 2 GiB. With a match
// finder that uses multibyte resolution (hashes start at e.g. every
// fourth byte), cyclic_size would stay below 2 Gi even when
// dictionary size is greater than 2 GiB.
//
// It would be possible to allow cyclic_size >= 2 Gi, but then we
// would need to be careful to use 64-bit types in various places
// (size_t could do since we would need bigger than 32-bit address
// space anyway). It would also require either zeroing a multigigabyte
// buffer at initialization (waste of time and RAM) or allow
// normalization in lz_encoder_mf.c to access uninitialized
// memory to keep the code simpler. The current way is simple and
// still allows pretty big dictionaries, so I don't expect these
// limits to change.
mf->cyclic_size = lz_options->dictionary_size + 1;
// Validate the match finder ID and setup the function pointers.
switch (lz_options->match_finder) {
@ -298,9 +328,15 @@ lz_encoder_prepare(lzma_mf *mf, lzma_allocator *allocator,
hs += HASH_4_SIZE;
*/
// If the above code calculating hs is modified, make sure that
// this assertion stays valid (UINT32_MAX / 5 is not strictly the
// exact limit). If it doesn't, you need to calculate that
// hash_size_sum + sons_count cannot overflow.
assert(hs < UINT32_MAX / 5);
const uint32_t old_count = mf->hash_size_sum + mf->sons_count;
mf->hash_size_sum = hs;
mf->sons_count = mf->cyclic_buffer_size;
mf->sons_count = mf->cyclic_size;
if (is_bt)
mf->sons_count *= 2;
@ -335,11 +371,11 @@ lz_encoder_init(lzma_mf *mf, lzma_allocator *allocator)
return true;
}
// Use cyclic_buffer_size as initial mf->offset. This allows
// Use cyclic_size as initial mf->offset. This allows
// avoiding a few branches in the match finders. The downside is
// that match finder needs to be normalized more often, which may
// hurt performance with huge dictionaries.
mf->offset = mf->cyclic_buffer_size;
mf->offset = mf->cyclic_size;
mf->read_pos = 0;
mf->read_ahead = 0;
mf->read_limit = 0;
@ -364,7 +400,7 @@ lz_encoder_init(lzma_mf *mf, lzma_allocator *allocator)
}
mf->son = mf->hash + mf->hash_size_sum;
mf->cyclic_buffer_pos = 0;
mf->cyclic_pos = 0;
// Initialize the hash table. Since EMPTY_HASH_VALUE is zero, we
// can use memset().

View File

@ -53,18 +53,20 @@ struct lzma_mf_s {
/// Number of bytes that must be kept in buffer after read_pos.
/// That is, read_pos <= write_pos - keep_size_after as long as
/// stream_end_was_reached is false (once it is true, read_pos
/// is allowed to reach write_pos).
/// action is LZMA_RUN; when action != LZMA_RUN, read_pos is allowed
/// to reach write_pos so that the last bytes get encoded too.
uint32_t keep_size_after;
/// Match finders store locations of matches using 32-bit integers.
/// To avoid adjusting several megabytes of integers every time the
/// input window is moved with move_window(), we only adjust the
/// offset of the buffer. Thus, buffer[match_finder_pos - offset]
/// is the byte pointed by match_finder_pos.
/// input window is moved with move_window, we only adjust the
/// offset of the buffer. Thus, buffer[value_in_hash_table - offset]
/// is the byte pointed by value_in_hash_table.
uint32_t offset;
/// buffer[read_pos] is the current byte.
/// buffer[read_pos] is the next byte to run through the match
/// finder. This is incremented in the match finder once the byte
/// has been processed.
uint32_t read_pos;
/// Number of bytes that have been ran through the match finder, but
@ -103,8 +105,8 @@ struct lzma_mf_s {
uint32_t *hash;
uint32_t *son;
uint32_t cyclic_buffer_pos;
uint32_t cyclic_buffer_size; // Must be dictionary_size + 1.
uint32_t cyclic_pos;
uint32_t cyclic_size; // Must be dictionary size + 1.
uint32_t hash_mask;
/// Maximum number of loops in the match finder

View File

@ -121,7 +121,7 @@ normalize(lzma_mf *mf)
// In future we may not want to touch the lowest bits, because there
// may be match finders that use larger resolution than one byte.
const uint32_t subvalue
= (MUST_NORMALIZE_POS - mf->cyclic_buffer_size);
= (MUST_NORMALIZE_POS - mf->cyclic_size);
// & (~(UINT32_C(1) << 10) - 1);
const uint32_t count = mf->hash_size_sum + mf->sons_count;
@ -155,8 +155,8 @@ normalize(lzma_mf *mf)
static void
move_pos(lzma_mf *mf)
{
if (++mf->cyclic_buffer_pos == mf->cyclic_buffer_size)
mf->cyclic_buffer_pos = 0;
if (++mf->cyclic_pos == mf->cyclic_size)
mf->cyclic_pos = 0;
++mf->read_pos;
assert(mf->read_pos <= mf->write_pos);
@ -177,7 +177,7 @@ move_pos(lzma_mf *mf)
/// function (with small amount of input, it may start using mf->pending
/// again if flushing).
///
/// Due to this rewinding, we don't touch cyclic_buffer_pos or test for
/// Due to this rewinding, we don't touch cyclic_pos or test for
/// normalization. It will be done when the match finder's skip function
/// catches up after a flush.
static void
@ -227,8 +227,7 @@ move_pending(lzma_mf *mf)
#define call_find(func, len_best) \
do { \
matches_count = func(len_limit, pos, cur, cur_match, mf->loops, \
mf->son, mf->cyclic_buffer_pos, \
mf->cyclic_buffer_size, \
mf->son, mf->cyclic_pos, mf->cyclic_size, \
matches + matches_count, len_best) \
- matches; \
move_pos(mf); \
@ -249,8 +248,8 @@ do { \
/// \param cur_match Start position of the current match candidate
/// \param loops Maximum length of the hash chain
/// \param son lzma_mf.son (contains the hash chain)
/// \param cyclic_buffer_pos
/// \param cyclic_buffer_size
/// \param cyclic_pos
/// \param cyclic_size
/// \param matches Array to hold the matches.
/// \param len_best The length of the longest match found so far.
static lzma_match *
@ -261,22 +260,21 @@ hc_find_func(
uint32_t cur_match,
uint32_t loops,
uint32_t *const son,
const uint32_t cyclic_buffer_pos,
const uint32_t cyclic_buffer_size,
const uint32_t cyclic_pos,
const uint32_t cyclic_size,
lzma_match *matches,
uint32_t len_best)
{
son[cyclic_buffer_pos] = cur_match;
son[cyclic_pos] = cur_match;
while (true) {
const uint32_t delta = pos - cur_match;
if (loops-- == 0 || delta >= cyclic_buffer_size)
if (loops-- == 0 || delta >= cyclic_size)
return matches;
const uint8_t *const pb = cur - delta;
cur_match = son[cyclic_buffer_pos - delta
+ (delta > cyclic_buffer_pos
? cyclic_buffer_size : 0)];
cur_match = son[cyclic_pos - delta
+ (delta > cyclic_pos ? cyclic_size : 0)];
if (pb[len_best] == cur[len_best] && pb[0] == cur[0]) {
uint32_t len = 0;
@ -297,23 +295,6 @@ hc_find_func(
}
}
/*
#define hc_header_find(len_min, ret_op) \
uint32_t len_limit = mf_avail(mf); \
if (mf->find_len_max <= len_limit) { \
len_limit = mf->find_len_max; \
} else if (len_limit < (len_min)) { \
move_pending(mf); \
ret_op; \
} \
#define header_hc(len_min, ret_op) \
do { \
if (mf_avail(mf) < (len_min)) { \
move_pending(mf); \
ret_op; \
} \
} while (0)
*/
#define hc_find(len_best) \
call_find(hc_find_func, len_best)
@ -321,7 +302,7 @@ do { \
#define hc_skip() \
do { \
mf->son[mf->cyclic_buffer_pos] = cur_match; \
mf->son[mf->cyclic_pos] = cur_match; \
move_pos(mf); \
} while (0)
@ -344,7 +325,7 @@ lzma_mf_hc3_find(lzma_mf *mf, lzma_match *matches)
uint32_t len_best = 2;
if (delta2 < mf->cyclic_buffer_size && *(cur - delta2) == *cur) {
if (delta2 < mf->cyclic_size && *(cur - delta2) == *cur) {
for ( ; len_best != len_limit; ++len_best)
if (*(cur + len_best - delta2) != cur[len_best])
break;
@ -409,14 +390,14 @@ lzma_mf_hc4_find(lzma_mf *mf, lzma_match *matches)
uint32_t len_best = 1;
if (delta2 < mf->cyclic_buffer_size && *(cur - delta2) == *cur) {
if (delta2 < mf->cyclic_size && *(cur - delta2) == *cur) {
len_best = 2;
matches[0].len = 2;
matches[0].dist = delta2 - 1;
matches_count = 1;
}
if (delta2 != delta3 && delta3 < mf->cyclic_buffer_size
if (delta2 != delta3 && delta3 < mf->cyclic_size
&& *(cur - delta3) == *cur) {
len_best = 3;
matches[matches_count++].dist = delta3 - 1;
@ -484,28 +465,28 @@ bt_find_func(
uint32_t cur_match,
uint32_t loops,
uint32_t *const son,
const uint32_t cyclic_buffer_pos,
const uint32_t cyclic_buffer_size,
const uint32_t cyclic_pos,
const uint32_t cyclic_size,
lzma_match *matches,
uint32_t len_best)
{
uint32_t *ptr0 = son + (cyclic_buffer_pos << 1) + 1;
uint32_t *ptr1 = son + (cyclic_buffer_pos << 1);
uint32_t *ptr0 = son + (cyclic_pos << 1) + 1;
uint32_t *ptr1 = son + (cyclic_pos << 1);
uint32_t len0 = 0;
uint32_t len1 = 0;
while (true) {
const uint32_t delta = pos - cur_match;
if (loops-- == 0 || delta >= cyclic_buffer_size) {
if (loops-- == 0 || delta >= cyclic_size) {
*ptr0 = EMPTY_HASH_VALUE;
*ptr1 = EMPTY_HASH_VALUE;
return matches;
}
uint32_t *const pair = son + ((cyclic_buffer_pos - delta
+ (delta > cyclic_buffer_pos
? cyclic_buffer_size : 0)) << 1);
uint32_t *const pair = son + ((cyclic_pos - delta
+ (delta > cyclic_pos ? cyclic_size : 0))
<< 1);
const uint8_t *const pb = cur - delta;
uint32_t len = MIN(len0, len1);
@ -552,26 +533,26 @@ bt_skip_func(
uint32_t cur_match,
uint32_t loops,
uint32_t *const son,
const uint32_t cyclic_buffer_pos,
const uint32_t cyclic_buffer_size)
const uint32_t cyclic_pos,
const uint32_t cyclic_size)
{
uint32_t *ptr0 = son + (cyclic_buffer_pos << 1) + 1;
uint32_t *ptr1 = son + (cyclic_buffer_pos << 1);
uint32_t *ptr0 = son + (cyclic_pos << 1) + 1;
uint32_t *ptr1 = son + (cyclic_pos << 1);
uint32_t len0 = 0;
uint32_t len1 = 0;
while (true) {
const uint32_t delta = pos - cur_match;
if (loops-- == 0 || delta >= cyclic_buffer_size) {
if (loops-- == 0 || delta >= cyclic_size) {
*ptr0 = EMPTY_HASH_VALUE;
*ptr1 = EMPTY_HASH_VALUE;
return;
}
uint32_t *pair = son + ((cyclic_buffer_pos - delta
+ (delta > cyclic_buffer_pos
? cyclic_buffer_size : 0)) << 1);
uint32_t *pair = son + ((cyclic_pos - delta
+ (delta > cyclic_pos ? cyclic_size : 0))
<< 1);
const uint8_t *pb = cur - delta;
uint32_t len = MIN(len0, len1);
@ -608,8 +589,8 @@ bt_skip_func(
#define bt_skip() \
do { \
bt_skip_func(len_limit, pos, cur, cur_match, mf->loops, \
mf->son, mf->cyclic_buffer_pos, \
mf->cyclic_buffer_size); \
mf->son, mf->cyclic_pos, \
mf->cyclic_size); \
move_pos(mf); \
} while (0)
@ -665,7 +646,7 @@ lzma_mf_bt3_find(lzma_mf *mf, lzma_match *matches)
uint32_t len_best = 2;
if (delta2 < mf->cyclic_buffer_size && *(cur - delta2) == *cur) {
if (delta2 < mf->cyclic_size && *(cur - delta2) == *cur) {
for ( ; len_best != len_limit; ++len_best)
if (*(cur + len_best - delta2) != cur[len_best])
break;
@ -724,14 +705,14 @@ lzma_mf_bt4_find(lzma_mf *mf, lzma_match *matches)
uint32_t len_best = 1;
if (delta2 < mf->cyclic_buffer_size && *(cur - delta2) == *cur) {
if (delta2 < mf->cyclic_size && *(cur - delta2) == *cur) {
len_best = 2;
matches[0].len = 2;
matches[0].dist = delta2 - 1;
matches_count = 1;
}
if (delta2 != delta3 && delta3 < mf->cyclic_buffer_size
if (delta2 != delta3 && delta3 < mf->cyclic_size
&& *(cur - delta3) == *cur) {
len_best = 3;
matches[matches_count++].dist = delta3 - 1;