2007-12-09 00:42:33 +02:00
|
|
|
///////////////////////////////////////////////////////////////////////////////
|
|
|
|
//
|
|
|
|
/// \file crc64.c
|
|
|
|
/// \brief CRC64 calculation
|
2009-04-13 11:27:40 +03:00
|
|
|
///
|
2022-11-14 21:34:57 +02:00
|
|
|
/// There are two methods in this file. crc64_generic uses the
|
|
|
|
/// the slice-by-four algorithm. This is the same idea that is
|
|
|
|
/// used in crc32_fast.c, but for CRC64 we use only four tables
|
2009-04-13 11:27:40 +03:00
|
|
|
/// instead of eight to avoid increasing CPU cache usage.
|
2022-11-14 21:34:57 +02:00
|
|
|
///
|
|
|
|
/// crc64_clmul uses 32/64-bit x86 SSSE3, SSE4.1, and CLMUL instructions.
|
|
|
|
/// It was derived from
|
|
|
|
/// https://www.intel.com/content/dam/www/public/us/en/documents/white-papers/fast-crc-computation-generic-polynomials-pclmulqdq-paper.pdf
|
|
|
|
/// and the public domain code from https://github.com/rawrunprotected/crc
|
|
|
|
/// (URLs were checked on 2022-11-07).
|
|
|
|
///
|
|
|
|
/// FIXME: Builds for 32-bit x86 use crc64_x86.S by default instead
|
|
|
|
/// of this file and thus CLMUL version isn't available on 32-bit x86
|
|
|
|
/// unless configured with --disable-assembler. Even then the lookup table
|
|
|
|
/// isn't omitted in crc64_table.c since it doesn't know that assembly
|
|
|
|
/// code has been disabled.
|
2007-12-09 00:42:33 +02:00
|
|
|
//
|
2022-11-14 21:34:57 +02:00
|
|
|
// Authors: Lasse Collin
|
|
|
|
// Ilya Kurdyukov
|
2007-12-09 00:42:33 +02:00
|
|
|
//
|
2009-04-13 11:27:40 +03:00
|
|
|
// This file has been put into the public domain.
|
|
|
|
// You can do whatever you want with this file.
|
2007-12-09 00:42:33 +02:00
|
|
|
//
|
|
|
|
///////////////////////////////////////////////////////////////////////////////
|
|
|
|
|
|
|
|
#include "check.h"
|
2022-11-14 21:34:57 +02:00
|
|
|
|
|
|
|
#undef CRC_GENERIC
|
|
|
|
#undef CRC_CLMUL
|
|
|
|
#undef CRC_USE_GENERIC_FOR_SMALL_INPUTS
|
|
|
|
|
|
|
|
// If CLMUL cannot be used then only the generic slice-by-four is built.
|
|
|
|
#if !defined(HAVE_USABLE_CLMUL)
|
|
|
|
# define CRC_GENERIC 1
|
|
|
|
|
|
|
|
// If CLMUL is allowed unconditionally in the compiler options then the
|
|
|
|
// generic version can be omitted. Note that this doesn't work with MSVC
|
|
|
|
// as I don't know how to detect the features here.
|
|
|
|
//
|
|
|
|
// NOTE: Keep this this in sync with crc64_table.c.
|
|
|
|
#elif (defined(__SSSE3__) && defined(__SSE4_1__) && defined(__PCLMUL__)) \
|
|
|
|
|| (defined(__e2k__) && __iset__ >= 6)
|
|
|
|
# define CRC_CLMUL 1
|
|
|
|
|
|
|
|
// Otherwise build both and detect at runtime which version to use.
|
|
|
|
#else
|
|
|
|
# define CRC_GENERIC 1
|
|
|
|
# define CRC_CLMUL 1
|
|
|
|
|
|
|
|
/*
|
|
|
|
// The generic code is much faster with 1-8-byte inputs and has
|
|
|
|
// similar performance up to 16 bytes at least in microbenchmarks
|
|
|
|
// (it depends on input buffer alignment too). If both versions are
|
|
|
|
// built, this #define will use the generic version for inputs up to
|
|
|
|
// 16 bytes and CLMUL for bigger inputs. It saves a little in code
|
|
|
|
// size since the special cases for 0-16-byte inputs will be omitted
|
|
|
|
// from the CLMUL code.
|
|
|
|
# define CRC_USE_GENERIC_FOR_SMALL_INPUTS 1
|
|
|
|
*/
|
|
|
|
|
|
|
|
# if defined(_MSC_VER)
|
|
|
|
# include <intrin.h>
|
|
|
|
# elif defined(HAVE_CPUID_H)
|
|
|
|
# include <cpuid.h>
|
|
|
|
# endif
|
|
|
|
#endif
|
|
|
|
|
|
|
|
|
|
|
|
/////////////////////////////////
|
|
|
|
// Generic slice-by-four CRC64 //
|
|
|
|
/////////////////////////////////
|
|
|
|
|
|
|
|
#ifdef CRC_GENERIC
|
|
|
|
|
2007-12-09 00:42:33 +02:00
|
|
|
#include "crc_macros.h"
|
|
|
|
|
|
|
|
|
|
|
|
#ifdef WORDS_BIGENDIAN
|
|
|
|
# define A1(x) ((x) >> 56)
|
|
|
|
#else
|
|
|
|
# define A1 A
|
|
|
|
#endif
|
|
|
|
|
|
|
|
|
2009-04-13 11:27:40 +03:00
|
|
|
// See the comments in crc32_fast.c. They aren't duplicated here.
|
2022-11-14 21:34:57 +02:00
|
|
|
static uint64_t
|
|
|
|
crc64_generic(const uint8_t *buf, size_t size, uint64_t crc)
|
2007-12-09 00:42:33 +02:00
|
|
|
{
|
|
|
|
crc = ~crc;
|
|
|
|
|
|
|
|
#ifdef WORDS_BIGENDIAN
|
2009-10-04 22:57:12 +03:00
|
|
|
crc = bswap64(crc);
|
2007-12-09 00:42:33 +02:00
|
|
|
#endif
|
|
|
|
|
|
|
|
if (size > 4) {
|
|
|
|
while ((uintptr_t)(buf) & 3) {
|
|
|
|
crc = lzma_crc64_table[0][*buf++ ^ A1(crc)] ^ S8(crc);
|
|
|
|
--size;
|
|
|
|
}
|
|
|
|
|
|
|
|
const uint8_t *const limit = buf + (size & ~(size_t)(3));
|
|
|
|
size &= (size_t)(3);
|
|
|
|
|
|
|
|
while (buf < limit) {
|
|
|
|
#ifdef WORDS_BIGENDIAN
|
2022-10-31 11:54:44 +02:00
|
|
|
const uint32_t tmp = (uint32_t)(crc >> 32)
|
2019-12-31 00:29:48 +02:00
|
|
|
^ aligned_read32ne(buf);
|
2007-12-09 00:42:33 +02:00
|
|
|
#else
|
2022-10-31 11:54:44 +02:00
|
|
|
const uint32_t tmp = (uint32_t)crc
|
|
|
|
^ aligned_read32ne(buf);
|
2007-12-09 00:42:33 +02:00
|
|
|
#endif
|
|
|
|
buf += 4;
|
|
|
|
|
|
|
|
crc = lzma_crc64_table[3][A(tmp)]
|
|
|
|
^ lzma_crc64_table[2][B(tmp)]
|
|
|
|
^ S32(crc)
|
|
|
|
^ lzma_crc64_table[1][C(tmp)]
|
|
|
|
^ lzma_crc64_table[0][D(tmp)];
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
while (size-- != 0)
|
|
|
|
crc = lzma_crc64_table[0][*buf++ ^ A1(crc)] ^ S8(crc);
|
|
|
|
|
|
|
|
#ifdef WORDS_BIGENDIAN
|
2009-10-04 22:57:12 +03:00
|
|
|
crc = bswap64(crc);
|
2007-12-09 00:42:33 +02:00
|
|
|
#endif
|
|
|
|
|
|
|
|
return ~crc;
|
|
|
|
}
|
2022-11-14 21:34:57 +02:00
|
|
|
#endif
|
|
|
|
|
|
|
|
|
|
|
|
/////////////////////
|
|
|
|
// x86 CLMUL CRC64 //
|
|
|
|
/////////////////////
|
|
|
|
|
|
|
|
#ifdef CRC_CLMUL
|
|
|
|
|
|
|
|
#include <immintrin.h>
|
|
|
|
|
|
|
|
|
|
|
|
/*
|
|
|
|
// These functions were used to generate the constants
|
|
|
|
// at the top of crc64_clmul().
|
|
|
|
static uint64_t
|
|
|
|
calc_lo(uint64_t poly)
|
|
|
|
{
|
|
|
|
uint64_t a = poly;
|
|
|
|
uint64_t b = 0;
|
|
|
|
|
|
|
|
for (unsigned i = 0; i < 64; ++i) {
|
|
|
|
b = (b >> 1) | (a << 63);
|
|
|
|
a = (a >> 1) ^ (a & 1 ? poly : 0);
|
|
|
|
}
|
|
|
|
|
|
|
|
return b;
|
|
|
|
}
|
|
|
|
|
|
|
|
static uint64_t
|
|
|
|
calc_hi(uint64_t poly, uint64_t a)
|
|
|
|
{
|
|
|
|
for (unsigned i = 0; i < 64; ++i)
|
|
|
|
a = (a >> 1) ^ (a & 1 ? poly : 0);
|
|
|
|
|
|
|
|
return a;
|
|
|
|
}
|
|
|
|
*/
|
|
|
|
|
|
|
|
|
|
|
|
#define MASK_L(in, mask, r) \
|
|
|
|
r = _mm_shuffle_epi8(in, mask)
|
|
|
|
|
|
|
|
#define MASK_H(in, mask, r) \
|
|
|
|
r = _mm_shuffle_epi8(in, _mm_xor_si128(mask, vsign))
|
|
|
|
|
|
|
|
#define MASK_LH(in, mask, low, high) \
|
|
|
|
MASK_L(in, mask, low); \
|
|
|
|
MASK_H(in, mask, high)
|
|
|
|
|
|
|
|
|
|
|
|
// EDG-based compilers (Intel's classic compiler and compiler for E2K) can
|
|
|
|
// define __GNUC__ but the attribute must not be used with them.
|
|
|
|
// The new Clang-based ICX needs the attribute.
|
|
|
|
//
|
|
|
|
// NOTE: Build systems check for this too, keep them in sync with this.
|
|
|
|
#if (defined(__GNUC__) || defined(__clang__)) && !defined(__EDG__)
|
|
|
|
__attribute__((__target__("ssse3,sse4.1,pclmul")))
|
|
|
|
#endif
|
|
|
|
static uint64_t
|
|
|
|
crc64_clmul(const uint8_t *buf, size_t size, uint64_t crc)
|
|
|
|
{
|
|
|
|
// The prototypes of the intrinsics use signed types while most of
|
|
|
|
// the values are treated as unsigned here. These warnings in this
|
|
|
|
// function have been checked and found to be harmless so silence them.
|
|
|
|
#if TUKLIB_GNUC_REQ(4, 6) || defined(__clang__)
|
|
|
|
# pragma GCC diagnostic push
|
|
|
|
# pragma GCC diagnostic ignored "-Wsign-conversion"
|
|
|
|
# pragma GCC diagnostic ignored "-Wconversion"
|
|
|
|
#endif
|
|
|
|
|
|
|
|
#ifndef CRC_USE_GENERIC_FOR_SMALL_INPUTS
|
|
|
|
// The code assumes that there is at least one byte of input.
|
|
|
|
if (size == 0)
|
|
|
|
return crc;
|
|
|
|
#endif
|
|
|
|
|
|
|
|
// const uint64_t poly = 0xc96c5795d7870f42; // CRC polynomial
|
|
|
|
const uint64_t p = 0x92d8af2baf0e1e85; // (poly << 1) | 1
|
|
|
|
const uint64_t mu = 0x9c3e466c172963d5; // (calc_lo(poly) << 1) | 1
|
|
|
|
const uint64_t k2 = 0xdabe95afc7875f40; // calc_hi(poly, 1)
|
|
|
|
const uint64_t k1 = 0xe05dd497ca393ae4; // calc_hi(poly, k2)
|
|
|
|
const __m128i vfold0 = _mm_set_epi64x(p, mu);
|
|
|
|
const __m128i vfold1 = _mm_set_epi64x(k2, k1);
|
|
|
|
|
|
|
|
// Create a vector with 8-bit values 0 to 15. This is used to
|
|
|
|
// construct control masks for _mm_blendv_epi8 and _mm_shuffle_epi8.
|
|
|
|
const __m128i vramp = _mm_setr_epi32(
|
|
|
|
0x03020100, 0x07060504, 0x0b0a0908, 0x0f0e0d0c);
|
|
|
|
|
|
|
|
// This is used to inverse the control mask of _mm_shuffle_epi8
|
|
|
|
// so that bytes that wouldn't be picked with the original mask
|
|
|
|
// will be picked and vice versa.
|
|
|
|
const __m128i vsign = _mm_set1_epi8(0x80);
|
|
|
|
|
|
|
|
// Memory addresses A to D and the distances between them:
|
|
|
|
//
|
|
|
|
// A B C D
|
|
|
|
// [skip_start][size][skip_end]
|
|
|
|
// [ size2 ]
|
|
|
|
//
|
|
|
|
// A and D are 16-byte aligned. B and C are 1-byte aligned.
|
|
|
|
// skip_start and skip_end are 0-15 bytes. size is at least 1 byte.
|
|
|
|
//
|
|
|
|
// A = aligned_buf will initially point to this address.
|
|
|
|
// B = The address pointed by the caller-supplied buf.
|
|
|
|
// C = buf + size == aligned_buf + size2
|
|
|
|
// D = buf + size + skip_end == aligned_buf + size2 + skip_end
|
|
|
|
const size_t skip_start = (size_t)((uintptr_t)buf & 15);
|
|
|
|
const size_t skip_end = (size_t)(-(uintptr_t)(buf + size) & 15);
|
|
|
|
const __m128i *aligned_buf = (const __m128i *)(
|
|
|
|
(uintptr_t)buf & ~(uintptr_t)15);
|
|
|
|
|
|
|
|
// If size2 <= 16 then the whole input fits into a single 16-byte
|
|
|
|
// vector. If size2 > 16 then at least two 16-byte vectors must
|
|
|
|
// be processed. If size2 > 16 && size <= 16 then there is only
|
|
|
|
// one 16-byte vector's worth of input but it is unaligned in memory.
|
|
|
|
//
|
|
|
|
// NOTE: There is no integer overflow here if the arguments are valid.
|
|
|
|
// If this overflowed, buf + size would too.
|
|
|
|
size_t size2 = skip_start + size;
|
|
|
|
|
|
|
|
// Masks to be used with _mm_blendv_epi8 and _mm_shuffle_epi8:
|
|
|
|
// The first skip_start or skip_end bytes in the vectors will have
|
|
|
|
// the high bit (0x80) set. _mm_blendv_epi8 and _mm_shuffle_epi8
|
|
|
|
// will produce zeros for these positions. (Bitwise-xor of these
|
|
|
|
// masks with vsign will produce the opposite behavior.)
|
|
|
|
const __m128i mask_start
|
|
|
|
= _mm_sub_epi8(vramp, _mm_set1_epi8(skip_start));
|
|
|
|
const __m128i mask_end = _mm_sub_epi8(vramp, _mm_set1_epi8(skip_end));
|
|
|
|
|
|
|
|
// Get the first 1-16 bytes into data0. If loading less than 16 bytes,
|
|
|
|
// the bytes are loaded to the high bits of the vector and the least
|
|
|
|
// significant positions are filled with zeros.
|
|
|
|
const __m128i data0 = _mm_blendv_epi8(_mm_load_si128(aligned_buf),
|
|
|
|
_mm_setzero_si128(), mask_start);
|
|
|
|
++aligned_buf;
|
|
|
|
|
|
|
|
#if defined(__i386__) || defined(_M_IX86)
|
|
|
|
const __m128i initial_crc = _mm_set_epi64x(0, ~crc);
|
|
|
|
#else
|
|
|
|
// GCC and Clang would produce good code with _mm_set_epi64x
|
|
|
|
// but MSVC needs _mm_cvtsi64_si128 on x86-64.
|
|
|
|
const __m128i initial_crc = _mm_cvtsi64_si128(~crc);
|
|
|
|
#endif
|
|
|
|
|
|
|
|
__m128i v0, v1, v2, v3;
|
|
|
|
|
|
|
|
#ifndef CRC_USE_GENERIC_FOR_SMALL_INPUTS
|
|
|
|
if (size <= 16) {
|
|
|
|
// Right-shift initial_crc by 1-16 bytes based on "size"
|
|
|
|
// and store the result in v1 (high bytes) and v0 (low bytes).
|
|
|
|
//
|
|
|
|
// NOTE: The highest 8 bytes of initial_crc are zeros so
|
|
|
|
// v1 will be filled with zeros if size >= 8. The highest 8
|
|
|
|
// bytes of v1 will always become zeros.
|
|
|
|
//
|
|
|
|
// [ v1 ][ v0 ]
|
|
|
|
// [ initial_crc ] size == 1
|
|
|
|
// [ initial_crc ] size == 2
|
|
|
|
// [ initial_crc ] size == 15
|
|
|
|
// [ initial_crc ] size == 16 (all in v0)
|
|
|
|
const __m128i mask_low = _mm_add_epi8(
|
|
|
|
vramp, _mm_set1_epi8(size - 16));
|
|
|
|
MASK_LH(initial_crc, mask_low, v0, v1);
|
|
|
|
|
|
|
|
if (size2 <= 16) {
|
|
|
|
// There are 1-16 bytes of input and it is all
|
|
|
|
// in data0. Copy the input bytes to v3. If there
|
|
|
|
// are fewer than 16 bytes, the low bytes in v3
|
|
|
|
// will be filled with zeros. That is, the input
|
|
|
|
// bytes are stored to the same position as
|
|
|
|
// (part of) initial_crc is in v0.
|
|
|
|
MASK_L(data0, mask_end, v3);
|
|
|
|
} else {
|
|
|
|
// There are 2-16 bytes of input but not all bytes
|
|
|
|
// are in data0.
|
|
|
|
const __m128i data1 = _mm_load_si128(aligned_buf);
|
|
|
|
|
|
|
|
// Collect the 2-16 input bytes from data0 and data1
|
|
|
|
// to v2 and v3, and bitwise-xor them with the
|
|
|
|
// low bits of initial_crc in v0. Note that the
|
|
|
|
// the second xor is below this else-block as it
|
|
|
|
// is shared with the other branch.
|
|
|
|
MASK_H(data0, mask_end, v2);
|
|
|
|
MASK_L(data1, mask_end, v3);
|
|
|
|
v0 = _mm_xor_si128(v0, v2);
|
|
|
|
}
|
|
|
|
|
|
|
|
v0 = _mm_xor_si128(v0, v3);
|
|
|
|
v1 = _mm_alignr_epi8(v1, v0, 8);
|
|
|
|
} else
|
|
|
|
#endif
|
|
|
|
{
|
|
|
|
const __m128i data1 = _mm_load_si128(aligned_buf);
|
|
|
|
MASK_LH(initial_crc, mask_start, v0, v1);
|
|
|
|
v0 = _mm_xor_si128(v0, data0);
|
|
|
|
v1 = _mm_xor_si128(v1, data1);
|
|
|
|
|
|
|
|
#define FOLD \
|
|
|
|
v1 = _mm_xor_si128(v1, _mm_clmulepi64_si128(v0, vfold1, 0x00)); \
|
|
|
|
v0 = _mm_xor_si128(v1, _mm_clmulepi64_si128(v0, vfold1, 0x11));
|
|
|
|
|
|
|
|
while (size2 > 32) {
|
|
|
|
++aligned_buf;
|
|
|
|
size2 -= 16;
|
|
|
|
FOLD
|
|
|
|
v1 = _mm_load_si128(aligned_buf);
|
|
|
|
}
|
|
|
|
|
|
|
|
if (size2 < 32) {
|
|
|
|
MASK_H(v0, mask_end, v2);
|
|
|
|
MASK_L(v0, mask_end, v0);
|
|
|
|
MASK_L(v1, mask_end, v3);
|
|
|
|
v1 = _mm_or_si128(v2, v3);
|
|
|
|
}
|
|
|
|
|
|
|
|
FOLD
|
|
|
|
v1 = _mm_srli_si128(v0, 8);
|
|
|
|
#undef FOLD
|
|
|
|
}
|
|
|
|
|
|
|
|
v1 = _mm_xor_si128(_mm_clmulepi64_si128(v0, vfold1, 0x10), v1);
|
|
|
|
v0 = _mm_clmulepi64_si128(v1, vfold0, 0x00);
|
|
|
|
v2 = _mm_clmulepi64_si128(v0, vfold0, 0x10);
|
|
|
|
v0 = _mm_xor_si128(_mm_xor_si128(v2, _mm_slli_si128(v0, 8)), v1);
|
|
|
|
|
|
|
|
#if defined(__i386__) || defined(_M_IX86)
|
|
|
|
return ~(((uint64_t)(uint32_t)_mm_extract_epi32(v0, 3) << 32) |
|
|
|
|
(uint64_t)(uint32_t)_mm_extract_epi32(v0, 2));
|
|
|
|
#else
|
|
|
|
return ~(uint64_t)_mm_extract_epi64(v0, 1);
|
|
|
|
#endif
|
|
|
|
|
|
|
|
#if TUKLIB_GNUC_REQ(4, 6) || defined(__clang__)
|
|
|
|
# pragma GCC diagnostic pop
|
|
|
|
#endif
|
|
|
|
}
|
|
|
|
#endif
|
|
|
|
|
|
|
|
|
|
|
|
////////////////////////
|
|
|
|
// Detect CPU support //
|
|
|
|
////////////////////////
|
|
|
|
|
|
|
|
#if defined(CRC_GENERIC) && defined(CRC_CLMUL)
|
|
|
|
static inline bool
|
|
|
|
is_clmul_supported(void)
|
|
|
|
{
|
|
|
|
int success = 1;
|
|
|
|
uint32_t r[4]; // eax, ebx, ecx, edx
|
|
|
|
|
|
|
|
#if defined(_MSC_VER)
|
|
|
|
// This needs <intrin.h> with MSVC. ICC has it as a built-in
|
|
|
|
// on all platforms.
|
|
|
|
__cpuid(r, 1);
|
|
|
|
#elif defined(HAVE_CPUID_H)
|
|
|
|
// Compared to just using __asm__ to run CPUID, this also checks
|
|
|
|
// that CPUID is supported and saves and restores ebx as that is
|
|
|
|
// needed with GCC < 5 with position-independent code (PIC).
|
|
|
|
success = __get_cpuid(1, &r[0], &r[1], &r[2], &r[3]);
|
|
|
|
#else
|
|
|
|
// Just a fallback that shouldn't be needed.
|
|
|
|
__asm__("cpuid\n\t"
|
|
|
|
: "=a"(r[0]), "=b"(r[1]), "=c"(r[2]), "=d"(r[3])
|
|
|
|
: "a"(1), "c"(0));
|
|
|
|
#endif
|
|
|
|
|
|
|
|
// Returns true if these are supported:
|
|
|
|
// CLMUL (bit 1 in ecx)
|
|
|
|
// SSSE3 (bit 9 in ecx)
|
|
|
|
// SSE4.1 (bit 19 in ecx)
|
|
|
|
const uint32_t ecx_mask = (1 << 1) | (1 << 9) | (1 << 19);
|
|
|
|
return success && (r[2] & ecx_mask) == ecx_mask;
|
|
|
|
|
|
|
|
// Alternative methods that weren't used:
|
|
|
|
// - ICC's _may_i_use_cpu_feature: the other methods should work too.
|
|
|
|
// - GCC >= 6 / Clang / ICX __builtin_cpu_supports("pclmul")
|
|
|
|
//
|
|
|
|
// CPUID decding is needed with MSVC anyway and older GCC. This keeps
|
|
|
|
// the feature checks in the build system simpler too. The nice thing
|
|
|
|
// about __builtin_cpu_supports would be that it generates very short
|
|
|
|
// code as is it only reads a variable set at startup but a few bytes
|
|
|
|
// doesn't matter here.
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
#ifdef HAVE_FUNC_ATTRIBUTE_CONSTRUCTOR
|
|
|
|
# define CRC64_FUNC_INIT
|
|
|
|
# define CRC64_SET_FUNC_ATTR __attribute__((__constructor__))
|
|
|
|
#else
|
|
|
|
# define CRC64_FUNC_INIT = &crc64_dispatch
|
|
|
|
# define CRC64_SET_FUNC_ATTR
|
|
|
|
static uint64_t crc64_dispatch(const uint8_t *buf, size_t size, uint64_t crc);
|
|
|
|
#endif
|
|
|
|
|
|
|
|
|
|
|
|
// Pointer to the the selected CRC64 method.
|
|
|
|
static uint64_t (*crc64_func)(const uint8_t *buf, size_t size, uint64_t crc)
|
|
|
|
CRC64_FUNC_INIT;
|
|
|
|
|
|
|
|
|
|
|
|
CRC64_SET_FUNC_ATTR
|
|
|
|
static void
|
|
|
|
crc64_set_func(void)
|
|
|
|
{
|
|
|
|
crc64_func = is_clmul_supported() ? &crc64_clmul : &crc64_generic;
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
#ifndef HAVE_FUNC_ATTRIBUTE_CONSTRUCTOR
|
|
|
|
static uint64_t
|
|
|
|
crc64_dispatch(const uint8_t *buf, size_t size, uint64_t crc)
|
|
|
|
{
|
|
|
|
// When __attribute__((__constructor__)) isn't supported, set the
|
|
|
|
// function pointer without any locking. If multiple threads run
|
|
|
|
// the detection code in parallel, they will all end up setting
|
|
|
|
// the pointer to the same value. This avoids the use of
|
|
|
|
// mythread_once() on every call to lzma_crc64() but this likely
|
|
|
|
// isn't strictly standards compliant. Let's change it if it breaks.
|
|
|
|
crc64_set_func();
|
|
|
|
return crc64_func(buf, size, crc);
|
|
|
|
}
|
|
|
|
#endif
|
|
|
|
#endif
|
|
|
|
|
|
|
|
|
|
|
|
extern LZMA_API(uint64_t)
|
|
|
|
lzma_crc64(const uint8_t *buf, size_t size, uint64_t crc)
|
|
|
|
{
|
|
|
|
#if defined(CRC_GENERIC) && defined(CRC_CLMUL)
|
|
|
|
// If CLMUL is available, it is the best for non-tiny inputs,
|
|
|
|
// being over twice as fast as the generic slice-by-four version.
|
|
|
|
// However, for size <= 16 it's different. In the extreme case
|
|
|
|
// of size == 1 the generic version can be five times faster.
|
|
|
|
// At size >= 8 the CLMUL starts to become reasonable. It
|
|
|
|
// varies depending on the alignment of buf too.
|
|
|
|
//
|
|
|
|
// The above doesn't include the overhead of mythread_once().
|
|
|
|
// At least on x86-64 GNU/Linux, pthread_once() is very fast but
|
|
|
|
// it still makes lzma_crc64(buf, 1, crc) 50-100 % slower. When
|
|
|
|
// size reaches 12-16 bytes the overhead becomes negligible.
|
|
|
|
//
|
|
|
|
// So using the generic version for size <= 16 may give better
|
|
|
|
// performance with tiny inputs but if such inputs happen rarely
|
|
|
|
// it's not so obvious because then the lookup table of the
|
|
|
|
// generic version may not be in the processor cache.
|
|
|
|
#ifdef CRC_USE_GENERIC_FOR_SMALL_INPUTS
|
|
|
|
if (size <= 16)
|
|
|
|
return crc64_generic(buf, size, crc);
|
|
|
|
#endif
|
|
|
|
|
|
|
|
/*
|
|
|
|
#ifndef HAVE_FUNC_ATTRIBUTE_CONSTRUCTOR
|
|
|
|
// See crc64_dispatch(). This would be the alternative which uses
|
|
|
|
// locking and doesn't use crc64_dispatch(). Note that on Windows
|
|
|
|
// this method needs Vista threads.
|
|
|
|
mythread_once(crc64_set_func);
|
|
|
|
#endif
|
|
|
|
*/
|
|
|
|
|
|
|
|
return crc64_func(buf, size, crc);
|
|
|
|
|
|
|
|
#elif defined(CRC_CLMUL)
|
|
|
|
// If CLMUL is used unconditionally without runtime CPU detection
|
|
|
|
// then omitting the generic version and its 8 KiB lookup table
|
|
|
|
// makes the library smaller.
|
|
|
|
//
|
|
|
|
// FIXME: Lookup table isn't currently omitted on 32-bit x86,
|
|
|
|
// see crc64_table.c.
|
|
|
|
return crc64_clmul(buf, size, crc);
|
|
|
|
|
|
|
|
#else
|
|
|
|
return crc64_generic(buf, size, crc);
|
|
|
|
#endif
|
|
|
|
}
|