package dns import ( "errors" "net" "strconv" "strings" ) const hexDigit = "0123456789abcdef" // Everything is assumed in ClassINET. // SetReply creates a reply message from a request message. func (dns *Msg) SetReply(request *Msg) *Msg { dns.Id = request.Id dns.Response = true dns.Opcode = request.Opcode if dns.Opcode == OpcodeQuery { dns.RecursionDesired = request.RecursionDesired // Copy rd bit dns.CheckingDisabled = request.CheckingDisabled // Copy cd bit } dns.Rcode = RcodeSuccess if len(request.Question) > 0 { dns.Question = make([]Question, 1) dns.Question[0] = request.Question[0] } return dns } // SetQuestion creates a question message, it sets the Question // section, generates an Id and sets the RecursionDesired (RD) // bit to true. func (dns *Msg) SetQuestion(z string, t uint16) *Msg { dns.Id = Id() dns.RecursionDesired = true dns.Question = make([]Question, 1) dns.Question[0] = Question{z, t, ClassINET} return dns } // SetNotify creates a notify message, it sets the Question // section, generates an Id and sets the Authoritative (AA) // bit to true. func (dns *Msg) SetNotify(z string) *Msg { dns.Opcode = OpcodeNotify dns.Authoritative = true dns.Id = Id() dns.Question = make([]Question, 1) dns.Question[0] = Question{z, TypeSOA, ClassINET} return dns } // SetRcode creates an error message suitable for the request. func (dns *Msg) SetRcode(request *Msg, rcode int) *Msg { dns.SetReply(request) dns.Rcode = rcode return dns } // SetRcodeFormatError creates a message with FormError set. func (dns *Msg) SetRcodeFormatError(request *Msg) *Msg { dns.Rcode = RcodeFormatError dns.Opcode = OpcodeQuery dns.Response = true dns.Authoritative = false dns.Id = request.Id return dns } // SetUpdate makes the message a dynamic update message. It // sets the ZONE section to: z, TypeSOA, ClassINET. func (dns *Msg) SetUpdate(z string) *Msg { dns.Id = Id() dns.Response = false dns.Opcode = OpcodeUpdate dns.Compress = false // BIND9 cannot handle compression dns.Question = make([]Question, 1) dns.Question[0] = Question{z, TypeSOA, ClassINET} return dns } // SetIxfr creates message for requesting an IXFR. func (dns *Msg) SetIxfr(z string, serial uint32, ns, mbox string) *Msg { dns.Id = Id() dns.Question = make([]Question, 1) dns.Ns = make([]RR, 1) s := new(SOA) s.Hdr = RR_Header{z, TypeSOA, ClassINET, defaultTtl, 0} s.Serial = serial s.Ns = ns s.Mbox = mbox dns.Question[0] = Question{z, TypeIXFR, ClassINET} dns.Ns[0] = s return dns } // SetAxfr creates message for requesting an AXFR. func (dns *Msg) SetAxfr(z string) *Msg { dns.Id = Id() dns.Question = make([]Question, 1) dns.Question[0] = Question{z, TypeAXFR, ClassINET} return dns } // SetTsig appends a TSIG RR to the message. // This is only a skeleton TSIG RR that is added as the last RR in the // additional section. The Tsig is calculated when the message is being send. func (dns *Msg) SetTsig(z, algo string, fudge uint16, timesigned int64) *Msg { t := new(TSIG) t.Hdr = RR_Header{z, TypeTSIG, ClassANY, 0, 0} t.Algorithm = algo t.Fudge = fudge t.TimeSigned = uint64(timesigned) t.OrigId = dns.Id dns.Extra = append(dns.Extra, t) return dns } // SetEdns0 appends a EDNS0 OPT RR to the message. // TSIG should always the last RR in a message. func (dns *Msg) SetEdns0(udpsize uint16, do bool) *Msg { e := new(OPT) e.Hdr.Name = "." e.Hdr.Rrtype = TypeOPT e.SetUDPSize(udpsize) if do { e.SetDo() } dns.Extra = append(dns.Extra, e) return dns } // IsTsig checks if the message has a TSIG record as the last record // in the additional section. It returns the TSIG record found or nil. func (dns *Msg) IsTsig() *TSIG { if len(dns.Extra) > 0 { if dns.Extra[len(dns.Extra)-1].Header().Rrtype == TypeTSIG { return dns.Extra[len(dns.Extra)-1].(*TSIG) } } return nil } // IsEdns0 checks if the message has a EDNS0 (OPT) record, any EDNS0 // record in the additional section will do. It returns the OPT record // found or nil. func (dns *Msg) IsEdns0() *OPT { // RFC 6891, Section 6.1.1 allows the OPT record to appear // anywhere in the additional record section, but it's usually at // the end so start there. for i := len(dns.Extra) - 1; i >= 0; i-- { if dns.Extra[i].Header().Rrtype == TypeOPT { return dns.Extra[i].(*OPT) } } return nil } // popEdns0 is like IsEdns0, but it removes the record from the message. func (dns *Msg) popEdns0() *OPT { // RFC 6891, Section 6.1.1 allows the OPT record to appear // anywhere in the additional record section, but it's usually at // the end so start there. for i := len(dns.Extra) - 1; i >= 0; i-- { if dns.Extra[i].Header().Rrtype == TypeOPT { opt := dns.Extra[i].(*OPT) dns.Extra = append(dns.Extra[:i], dns.Extra[i+1:]...) return opt } } return nil } // IsDomainName checks if s is a valid domain name, it returns the number of // labels and true, when a domain name is valid. Note that non fully qualified // domain name is considered valid, in this case the last label is counted in // the number of labels. When false is returned the number of labels is not // defined. Also note that this function is extremely liberal; almost any // string is a valid domain name as the DNS is 8 bit protocol. It checks if each // label fits in 63 characters and that the entire name will fit into the 255 // octet wire format limit. func IsDomainName(s string) (labels int, ok bool) { // XXX: The logic in this function was copied from packDomainName and // should be kept in sync with that function. const lenmsg = 256 if len(s) == 0 { // Ok, for instance when dealing with update RR without any rdata. return 0, false } s = Fqdn(s) // Each dot ends a segment of the name. Except for escaped dots (\.), which // are normal dots. var ( off int begin int wasDot bool ) for i := 0; i < len(s); i++ { switch s[i] { case '\\': if off+1 > lenmsg { return labels, false } // check for \DDD if i+3 < len(s) && isDigit(s[i+1]) && isDigit(s[i+2]) && isDigit(s[i+3]) { i += 3 begin += 3 } else { i++ begin++ } wasDot = false case '.': if wasDot { // two dots back to back is not legal return labels, false } wasDot = true labelLen := i - begin if labelLen >= 1<<6 { // top two bits of length must be clear return labels, false } // off can already (we're in a loop) be bigger than lenmsg // this happens when a name isn't fully qualified off += 1 + labelLen if off > lenmsg { return labels, false } labels++ begin = i + 1 default: wasDot = false } } return labels, true } // IsSubDomain checks if child is indeed a child of the parent. If child and parent // are the same domain true is returned as well. func IsSubDomain(parent, child string) bool { // Entire child is contained in parent return CompareDomainName(parent, child) == CountLabel(parent) } // IsMsg sanity checks buf and returns an error if it isn't a valid DNS packet. // The checking is performed on the binary payload. func IsMsg(buf []byte) error { // Header if len(buf) < headerSize { return errors.New("dns: bad message header") } // Header: Opcode // TODO(miek): more checks here, e.g. check all header bits. return nil } // IsFqdn checks if a domain name is fully qualified. func IsFqdn(s string) bool { s2 := strings.TrimSuffix(s, ".") if s == s2 { return false } i := strings.LastIndexFunc(s2, func(r rune) bool { return r != '\\' }) // Test whether we have an even number of escape sequences before // the dot or none. return (len(s2)-i)%2 != 0 } // IsRRset checks if a set of RRs is a valid RRset as defined by RFC 2181. // This means the RRs need to have the same type, name, and class. Returns true // if the RR set is valid, otherwise false. func IsRRset(rrset []RR) bool { if len(rrset) == 0 { return false } if len(rrset) == 1 { return true } rrHeader := rrset[0].Header() rrType := rrHeader.Rrtype rrClass := rrHeader.Class rrName := rrHeader.Name for _, rr := range rrset[1:] { curRRHeader := rr.Header() if curRRHeader.Rrtype != rrType || curRRHeader.Class != rrClass || curRRHeader.Name != rrName { // Mismatch between the records, so this is not a valid rrset for //signing/verifying return false } } return true } // Fqdn return the fully qualified domain name from s. // If s is already fully qualified, it behaves as the identity function. func Fqdn(s string) string { if IsFqdn(s) { return s } return s + "." } // Copied from the official Go code. // ReverseAddr returns the in-addr.arpa. or ip6.arpa. hostname of the IP // address suitable for reverse DNS (PTR) record lookups or an error if it fails // to parse the IP address. func ReverseAddr(addr string) (arpa string, err error) { ip := net.ParseIP(addr) if ip == nil { return "", &Error{err: "unrecognized address: " + addr} } if v4 := ip.To4(); v4 != nil { buf := make([]byte, 0, net.IPv4len*4+len("in-addr.arpa.")) // Add it, in reverse, to the buffer for i := len(v4) - 1; i >= 0; i-- { buf = strconv.AppendInt(buf, int64(v4[i]), 10) buf = append(buf, '.') } // Append "in-addr.arpa." and return (buf already has the final .) buf = append(buf, "in-addr.arpa."...) return string(buf), nil } // Must be IPv6 buf := make([]byte, 0, net.IPv6len*4+len("ip6.arpa.")) // Add it, in reverse, to the buffer for i := len(ip) - 1; i >= 0; i-- { v := ip[i] buf = append(buf, hexDigit[v&0xF]) buf = append(buf, '.') buf = append(buf, hexDigit[v>>4]) buf = append(buf, '.') } // Append "ip6.arpa." and return (buf already has the final .) buf = append(buf, "ip6.arpa."...) return string(buf), nil } // String returns the string representation for the type t. func (t Type) String() string { if t1, ok := TypeToString[uint16(t)]; ok { return t1 } return "TYPE" + strconv.Itoa(int(t)) } // String returns the string representation for the class c. func (c Class) String() string { if s, ok := ClassToString[uint16(c)]; ok { // Only emit mnemonics when they are unambiguous, specically ANY is in both. if _, ok := StringToType[s]; !ok { return s } } return "CLASS" + strconv.Itoa(int(c)) } // String returns the string representation for the name n. func (n Name) String() string { return sprintName(string(n)) }